0
0
Fork 0
mirror of https://github.com/denoland/rusty_v8.git synced 2025-02-13 01:05:15 -05:00
denoland-rusty-v8/src/support.rs

441 lines
8.9 KiB
Rust
Raw Normal View History

use std::cell::UnsafeCell;
2019-10-16 15:47:34 -07:00
use std::marker::PhantomData;
use std::mem::align_of;
use std::mem::forget;
use std::mem::needs_drop;
2019-10-16 15:47:34 -07:00
use std::mem::size_of;
2019-10-22 14:52:43 -07:00
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr::drop_in_place;
use std::ptr::null_mut;
2019-11-20 13:34:32 -08:00
use std::ptr::NonNull;
2019-10-16 15:47:34 -07:00
// TODO use libc::intptr_t when stable.
// https://doc.rust-lang.org/1.7.0/libc/type.intptr_t.html
#[allow(non_camel_case_types)]
pub type intptr_t = isize;
2019-12-04 08:03:17 +01:00
pub use std::os::raw::c_char as char;
2019-10-19 17:15:23 -07:00
pub use std::os::raw::c_int as int;
pub use std::os::raw::c_long as long;
2019-10-19 17:15:23 -07:00
pub type Opaque = [u8; 0];
2019-10-16 15:47:34 -07:00
2019-11-20 13:34:32 -08:00
/// Pointer to object allocated on the C++ heap. The pointer may be null.
2019-10-17 16:46:54 -07:00
#[repr(transparent)]
pub struct UniquePtr<T>(Option<UniqueRef<T>>);
2019-10-17 16:46:54 -07:00
impl<T> UniquePtr<T> {
2019-10-22 14:52:43 -07:00
pub fn null() -> Self {
assert_unique_type_compatible::<Self, T>();
2019-10-22 14:52:43 -07:00
Self(None)
2019-10-17 16:46:54 -07:00
}
pub unsafe fn from_raw(ptr: *mut T) -> Self {
assert_unique_type_compatible::<Self, T>();
Self(UniqueRef::try_from_raw(ptr))
2019-10-17 16:46:54 -07:00
}
pub fn into_raw(self) -> *mut T {
self
.0
.map(|unique_ref| unique_ref.into_raw())
.unwrap_or_else(null_mut)
}
2019-11-20 13:34:32 -08:00
pub fn unwrap(self) -> UniqueRef<T> {
self.0.unwrap()
}
2019-10-17 16:46:54 -07:00
}
impl<T> From<UniqueRef<T>> for UniquePtr<T> {
fn from(unique_ref: UniqueRef<T>) -> Self {
Self(Some(unique_ref))
}
}
impl<T> Deref for UniquePtr<T> {
type Target = Option<UniqueRef<T>>;
2019-10-17 16:46:54 -07:00
fn deref(&self) -> &Self::Target {
2019-10-22 14:52:43 -07:00
&self.0
2019-10-17 16:46:54 -07:00
}
}
impl<T> DerefMut for UniquePtr<T> {
2019-10-17 16:46:54 -07:00
fn deref_mut(&mut self) -> &mut Self::Target {
2019-10-22 14:52:43 -07:00
&mut self.0
2019-10-17 16:46:54 -07:00
}
}
2019-11-20 13:34:32 -08:00
/// Pointer to object allocated on the C++ heap. The pointer may not be null.
#[repr(transparent)]
pub struct UniqueRef<T>(NonNull<T>);
2019-11-20 13:34:32 -08:00
impl<T> UniqueRef<T> {
unsafe fn try_from_raw(ptr: *mut T) -> Option<Self> {
assert_unique_type_compatible::<Self, T>();
NonNull::new(ptr).map(Self)
}
pub unsafe fn from_raw(ptr: *mut T) -> Self {
Self::try_from_raw(ptr).unwrap()
2019-11-20 13:34:32 -08:00
}
pub fn into_raw(self) -> *mut T {
let ptr = self.0.as_ptr();
forget(self);
ptr
}
pub fn make_shared(self) -> SharedRef<T>
where
T: Shared,
{
self.into()
2019-11-20 13:34:32 -08:00
}
}
impl<T> Deref for UniqueRef<T> {
type Target = T;
2019-11-20 13:34:32 -08:00
fn deref(&self) -> &Self::Target {
unsafe { self.0.as_ref() }
2019-11-20 13:34:32 -08:00
}
}
impl<T> DerefMut for UniqueRef<T> {
2019-11-20 13:34:32 -08:00
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { self.0.as_mut() }
2019-11-20 13:34:32 -08:00
}
}
impl<T> Drop for UniqueRef<T> {
2019-11-20 13:34:32 -08:00
fn drop(&mut self) {
unsafe { drop_in_place(self.0.as_ptr()) }
2019-11-20 13:34:32 -08:00
}
}
fn assert_unique_type_compatible<U, T>() {
// Assert that `U` (a `UniqueRef` or `UniquePtr`) has the same memory layout
// as a pointer to `T`.
assert_eq!(size_of::<U>(), size_of::<*mut T>());
assert_eq!(align_of::<U>(), align_of::<*mut T>());
// Assert that `T` (probably) implements `Drop`. If it doesn't, a regular
// reference should be used instead of UniquePtr/UniqueRef.
assert!(needs_drop::<T>());
}
pub trait Shared
where
Self: Sized,
{
fn clone(shared_ptr: *const SharedRef<Self>) -> SharedRef<Self>;
fn from_unique(unique: UniqueRef<Self>) -> SharedRef<Self>;
fn deref(shared_ptr: *const SharedRef<Self>) -> *mut Self;
fn reset(shared_ptr: *mut SharedRef<Self>);
fn use_count(shared_ptr: *const SharedRef<Self>) -> long;
}
/// Wrapper around a C++ shared_ptr. The shared_ptr is assumed to contain a
/// value and not be null.
#[repr(C)]
pub struct SharedRef<T>([*mut Opaque; 2], PhantomData<T>)
where
T: Shared;
unsafe impl<T> Send for SharedRef<T> where T: Shared + Send {}
impl<T> SharedRef<T>
where
T: Shared,
{
pub fn use_count(&self) -> long {
<T as Shared>::use_count(self)
}
}
impl<T> Clone for SharedRef<T>
where
T: Shared,
{
fn clone(&self) -> Self {
<T as Shared>::clone(self)
}
}
impl<T> From<UniqueRef<T>> for SharedRef<T>
where
T: Shared,
{
fn from(unique: UniqueRef<T>) -> Self {
<T as Shared>::from_unique(unique)
}
}
impl<T> Deref for SharedRef<T>
where
T: Shared,
{
type Target = UnsafeCell<T>;
fn deref(&self) -> &Self::Target {
unsafe { &*(<T as Shared>::deref(self) as *const UnsafeCell<T>) }
}
}
impl<T> DerefMut for SharedRef<T>
where
T: Shared,
{
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(<T as Shared>::deref(self) as *mut UnsafeCell<T>) }
}
}
impl<T> Drop for SharedRef<T>
where
T: Shared,
{
fn drop(&mut self) {
<T as Shared>::reset(self);
}
}
#[repr(C)]
#[derive(Debug, PartialEq)]
pub(crate) enum MaybeBool {
JustFalse = 0,
JustTrue = 1,
Nothing = 2,
}
impl Into<Option<bool>> for MaybeBool {
fn into(self) -> Option<bool> {
match self {
MaybeBool::JustFalse => Some(false),
MaybeBool::JustTrue => Some(true),
MaybeBool::Nothing => None,
}
}
}
#[derive(Copy, Clone)]
2019-10-17 16:46:54 -07:00
#[repr(transparent)]
pub struct CxxVTable(pub *const Opaque);
#[derive(Copy, Clone)]
2019-10-16 15:47:34 -07:00
pub struct RustVTable<DynT>(pub *const Opaque, pub PhantomData<DynT>);
pub struct FieldOffset<F>(usize, PhantomData<F>);
unsafe impl<F> Send for FieldOffset<F> where F: Send {}
unsafe impl<F> Sync for FieldOffset<F> where F: Sync {}
2019-10-20 16:10:40 -07:00
2019-10-16 15:47:34 -07:00
impl<F> Copy for FieldOffset<F> {}
impl<F> Clone for FieldOffset<F> {
fn clone(&self) -> Self {
Self(self.0, self.1)
}
}
impl<F> FieldOffset<F> {
pub fn from_ptrs<E>(embedder_ptr: *const E, field_ptr: *const F) -> Self {
let embedder_addr = embedder_ptr as usize;
let field_addr = field_ptr as usize;
assert!(field_addr >= embedder_addr);
assert!((field_addr + size_of::<F>()) <= (embedder_addr + size_of::<E>()));
2019-10-22 15:46:42 -07:00
Self(field_addr - embedder_addr, PhantomData)
2019-10-16 15:47:34 -07:00
}
pub unsafe fn to_embedder<E>(self, field: &F) -> &E {
(((field as *const _ as usize) - self.0) as *const E)
.as_ref()
.unwrap()
}
pub unsafe fn to_embedder_mut<E>(self, field: &mut F) -> &mut E {
(((field as *mut _ as usize) - self.0) as *mut E)
.as_mut()
.unwrap()
}
}
#[repr(C)]
#[derive(Default)]
pub struct Maybe<T> {
has_value: bool,
value: T,
}
impl<T> Into<Option<T>> for Maybe<T> {
fn into(self) -> Option<T> {
if self.has_value {
Some(self.value)
} else {
None
}
}
}
pub trait UnitType
where
Self: Copy + Sized,
{
#[inline(always)]
fn get() -> Self {
UnitValue::<Self>::get()
}
}
impl<T> UnitType for T where T: Copy + Sized {}
#[derive(Copy, Clone)]
struct UnitValue<T>(PhantomData<T>)
where
Self: Sized;
impl<T> UnitValue<T>
where
Self: Copy + Sized,
{
const SELF: Self = Self::new_checked();
const fn new_checked() -> Self {
// Statically assert that T is indeed a unit type.
let size_must_be_0 = size_of::<T>();
let s = Self(PhantomData::<T>);
[s][size_must_be_0]
}
#[inline(always)]
fn get_checked(self) -> T {
// This run-time check serves just as a backup for the compile-time
// check when Self::SELF is initialized.
assert_eq!(size_of::<T>(), 0);
unsafe { std::mem::MaybeUninit::<T>::zeroed().assume_init() }
}
#[inline(always)]
pub fn get() -> T {
// Accessing the Self::SELF is necessary to make the compile-time type check
// work.
Self::SELF.get_checked()
}
}
pub struct DefaultTag;
pub struct IdenticalConversionTag;
pub trait MapFnFrom<F, Tag = DefaultTag>
where
F: UnitType,
Self: Sized,
{
fn mapping() -> Self;
#[inline(always)]
fn map_fn_from(_: F) -> Self {
Self::mapping()
}
}
impl<F> MapFnFrom<F, IdenticalConversionTag> for F
where
Self: UnitType,
{
#[inline(always)]
fn mapping() -> Self {
Self::get()
}
}
pub trait MapFnTo<T, Tag = DefaultTag>
where
Self: UnitType,
T: Sized,
{
fn mapping() -> T;
#[inline(always)]
fn map_fn_to(self) -> T {
Self::mapping()
}
}
impl<F, T, Tag> MapFnTo<T, Tag> for F
where
Self: UnitType,
T: MapFnFrom<F, Tag>,
{
#[inline(always)]
fn mapping() -> T {
T::map_fn_from(F::get())
}
}
pub trait CFnFrom<F>
where
Self: Sized,
F: UnitType,
{
fn mapping() -> Self;
#[inline(always)]
fn c_fn_from(_: F) -> Self {
Self::mapping()
}
}
macro_rules! impl_c_fn_from {
($($arg:ident: $ty:ident),*) => {
impl<F, R, $($ty),*> CFnFrom<F> for extern "C" fn($($ty),*) -> R
where
F: UnitType + Fn($($ty),*) -> R,
{
#[inline(always)]
fn mapping() -> Self {
extern "C" fn c_fn<F, R, $($ty),*>($($arg: $ty),*) -> R
where
F: UnitType + Fn($($ty),*) -> R,
{
(F::get())($($arg),*)
};
c_fn::<F, R, $($ty),*>
}
}
};
}
impl_c_fn_from!();
impl_c_fn_from!(a0: A0);
impl_c_fn_from!(a0: A0, a1: A1);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6);
pub trait ToCFn<T>
where
Self: UnitType,
T: Sized,
{
fn mapping() -> T;
#[inline(always)]
fn to_c_fn(self) -> T {
Self::mapping()
}
}
impl<F, T> ToCFn<T> for F
where
Self: UnitType,
T: CFnFrom<F>,
{
#[inline(always)]
fn mapping() -> T {
T::c_fn_from(F::get())
}
}