mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2025-01-24 17:15:12 -05:00
6e23a1b843
update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)
1474 lines
37 KiB
Go
Vendored
1474 lines
37 KiB
Go
Vendored
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssh
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/md5"
|
|
"crypto/rsa"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"encoding/asn1"
|
|
"encoding/base64"
|
|
"encoding/hex"
|
|
"encoding/pem"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"strings"
|
|
|
|
"golang.org/x/crypto/ed25519"
|
|
"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
|
|
)
|
|
|
|
// These constants represent the algorithm names for key types supported by this
|
|
// package.
|
|
const (
|
|
KeyAlgoRSA = "ssh-rsa"
|
|
KeyAlgoDSA = "ssh-dss"
|
|
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
|
|
KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
|
|
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
|
|
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
|
|
KeyAlgoED25519 = "ssh-ed25519"
|
|
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
|
|
)
|
|
|
|
// These constants represent non-default signature algorithms that are supported
|
|
// as algorithm parameters to AlgorithmSigner.SignWithAlgorithm methods. See
|
|
// [PROTOCOL.agent] section 4.5.1 and
|
|
// https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-10
|
|
const (
|
|
SigAlgoRSA = "ssh-rsa"
|
|
SigAlgoRSASHA2256 = "rsa-sha2-256"
|
|
SigAlgoRSASHA2512 = "rsa-sha2-512"
|
|
)
|
|
|
|
// parsePubKey parses a public key of the given algorithm.
|
|
// Use ParsePublicKey for keys with prepended algorithm.
|
|
func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
|
|
switch algo {
|
|
case KeyAlgoRSA:
|
|
return parseRSA(in)
|
|
case KeyAlgoDSA:
|
|
return parseDSA(in)
|
|
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
|
|
return parseECDSA(in)
|
|
case KeyAlgoSKECDSA256:
|
|
return parseSKECDSA(in)
|
|
case KeyAlgoED25519:
|
|
return parseED25519(in)
|
|
case KeyAlgoSKED25519:
|
|
return parseSKEd25519(in)
|
|
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
|
|
cert, err := parseCert(in, certToPrivAlgo(algo))
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
return cert, nil, nil
|
|
}
|
|
return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
|
|
}
|
|
|
|
// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
|
|
// (see sshd(8) manual page) once the options and key type fields have been
|
|
// removed.
|
|
func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
|
|
in = bytes.TrimSpace(in)
|
|
|
|
i := bytes.IndexAny(in, " \t")
|
|
if i == -1 {
|
|
i = len(in)
|
|
}
|
|
base64Key := in[:i]
|
|
|
|
key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
|
|
n, err := base64.StdEncoding.Decode(key, base64Key)
|
|
if err != nil {
|
|
return nil, "", err
|
|
}
|
|
key = key[:n]
|
|
out, err = ParsePublicKey(key)
|
|
if err != nil {
|
|
return nil, "", err
|
|
}
|
|
comment = string(bytes.TrimSpace(in[i:]))
|
|
return out, comment, nil
|
|
}
|
|
|
|
// ParseKnownHosts parses an entry in the format of the known_hosts file.
|
|
//
|
|
// The known_hosts format is documented in the sshd(8) manual page. This
|
|
// function will parse a single entry from in. On successful return, marker
|
|
// will contain the optional marker value (i.e. "cert-authority" or "revoked")
|
|
// or else be empty, hosts will contain the hosts that this entry matches,
|
|
// pubKey will contain the public key and comment will contain any trailing
|
|
// comment at the end of the line. See the sshd(8) manual page for the various
|
|
// forms that a host string can take.
|
|
//
|
|
// The unparsed remainder of the input will be returned in rest. This function
|
|
// can be called repeatedly to parse multiple entries.
|
|
//
|
|
// If no entries were found in the input then err will be io.EOF. Otherwise a
|
|
// non-nil err value indicates a parse error.
|
|
func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
|
|
for len(in) > 0 {
|
|
end := bytes.IndexByte(in, '\n')
|
|
if end != -1 {
|
|
rest = in[end+1:]
|
|
in = in[:end]
|
|
} else {
|
|
rest = nil
|
|
}
|
|
|
|
end = bytes.IndexByte(in, '\r')
|
|
if end != -1 {
|
|
in = in[:end]
|
|
}
|
|
|
|
in = bytes.TrimSpace(in)
|
|
if len(in) == 0 || in[0] == '#' {
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
i := bytes.IndexAny(in, " \t")
|
|
if i == -1 {
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
// Strip out the beginning of the known_host key.
|
|
// This is either an optional marker or a (set of) hostname(s).
|
|
keyFields := bytes.Fields(in)
|
|
if len(keyFields) < 3 || len(keyFields) > 5 {
|
|
return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
|
|
}
|
|
|
|
// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
|
|
// list of hosts
|
|
marker := ""
|
|
if keyFields[0][0] == '@' {
|
|
marker = string(keyFields[0][1:])
|
|
keyFields = keyFields[1:]
|
|
}
|
|
|
|
hosts := string(keyFields[0])
|
|
// keyFields[1] contains the key type (e.g. “ssh-rsa”).
|
|
// However, that information is duplicated inside the
|
|
// base64-encoded key and so is ignored here.
|
|
|
|
key := bytes.Join(keyFields[2:], []byte(" "))
|
|
if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
|
|
return "", nil, nil, "", nil, err
|
|
}
|
|
|
|
return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
|
|
}
|
|
|
|
return "", nil, nil, "", nil, io.EOF
|
|
}
|
|
|
|
// ParseAuthorizedKeys parses a public key from an authorized_keys
|
|
// file used in OpenSSH according to the sshd(8) manual page.
|
|
func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
|
|
for len(in) > 0 {
|
|
end := bytes.IndexByte(in, '\n')
|
|
if end != -1 {
|
|
rest = in[end+1:]
|
|
in = in[:end]
|
|
} else {
|
|
rest = nil
|
|
}
|
|
|
|
end = bytes.IndexByte(in, '\r')
|
|
if end != -1 {
|
|
in = in[:end]
|
|
}
|
|
|
|
in = bytes.TrimSpace(in)
|
|
if len(in) == 0 || in[0] == '#' {
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
i := bytes.IndexAny(in, " \t")
|
|
if i == -1 {
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
|
|
return out, comment, options, rest, nil
|
|
}
|
|
|
|
// No key type recognised. Maybe there's an options field at
|
|
// the beginning.
|
|
var b byte
|
|
inQuote := false
|
|
var candidateOptions []string
|
|
optionStart := 0
|
|
for i, b = range in {
|
|
isEnd := !inQuote && (b == ' ' || b == '\t')
|
|
if (b == ',' && !inQuote) || isEnd {
|
|
if i-optionStart > 0 {
|
|
candidateOptions = append(candidateOptions, string(in[optionStart:i]))
|
|
}
|
|
optionStart = i + 1
|
|
}
|
|
if isEnd {
|
|
break
|
|
}
|
|
if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
|
|
inQuote = !inQuote
|
|
}
|
|
}
|
|
for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
|
|
i++
|
|
}
|
|
if i == len(in) {
|
|
// Invalid line: unmatched quote
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
in = in[i:]
|
|
i = bytes.IndexAny(in, " \t")
|
|
if i == -1 {
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
|
|
options = candidateOptions
|
|
return out, comment, options, rest, nil
|
|
}
|
|
|
|
in = rest
|
|
continue
|
|
}
|
|
|
|
return nil, "", nil, nil, errors.New("ssh: no key found")
|
|
}
|
|
|
|
// ParsePublicKey parses an SSH public key formatted for use in
|
|
// the SSH wire protocol according to RFC 4253, section 6.6.
|
|
func ParsePublicKey(in []byte) (out PublicKey, err error) {
|
|
algo, in, ok := parseString(in)
|
|
if !ok {
|
|
return nil, errShortRead
|
|
}
|
|
var rest []byte
|
|
out, rest, err = parsePubKey(in, string(algo))
|
|
if len(rest) > 0 {
|
|
return nil, errors.New("ssh: trailing junk in public key")
|
|
}
|
|
|
|
return out, err
|
|
}
|
|
|
|
// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
|
|
// authorized_keys file. The return value ends with newline.
|
|
func MarshalAuthorizedKey(key PublicKey) []byte {
|
|
b := &bytes.Buffer{}
|
|
b.WriteString(key.Type())
|
|
b.WriteByte(' ')
|
|
e := base64.NewEncoder(base64.StdEncoding, b)
|
|
e.Write(key.Marshal())
|
|
e.Close()
|
|
b.WriteByte('\n')
|
|
return b.Bytes()
|
|
}
|
|
|
|
// PublicKey is an abstraction of different types of public keys.
|
|
type PublicKey interface {
|
|
// Type returns the key's type, e.g. "ssh-rsa".
|
|
Type() string
|
|
|
|
// Marshal returns the serialized key data in SSH wire format,
|
|
// with the name prefix. To unmarshal the returned data, use
|
|
// the ParsePublicKey function.
|
|
Marshal() []byte
|
|
|
|
// Verify that sig is a signature on the given data using this
|
|
// key. This function will hash the data appropriately first.
|
|
Verify(data []byte, sig *Signature) error
|
|
}
|
|
|
|
// CryptoPublicKey, if implemented by a PublicKey,
|
|
// returns the underlying crypto.PublicKey form of the key.
|
|
type CryptoPublicKey interface {
|
|
CryptoPublicKey() crypto.PublicKey
|
|
}
|
|
|
|
// A Signer can create signatures that verify against a public key.
|
|
type Signer interface {
|
|
// PublicKey returns an associated PublicKey instance.
|
|
PublicKey() PublicKey
|
|
|
|
// Sign returns raw signature for the given data. This method
|
|
// will apply the hash specified for the keytype to the data.
|
|
Sign(rand io.Reader, data []byte) (*Signature, error)
|
|
}
|
|
|
|
// A AlgorithmSigner is a Signer that also supports specifying a specific
|
|
// algorithm to use for signing.
|
|
type AlgorithmSigner interface {
|
|
Signer
|
|
|
|
// SignWithAlgorithm is like Signer.Sign, but allows specification of a
|
|
// non-default signing algorithm. See the SigAlgo* constants in this
|
|
// package for signature algorithms supported by this package. Callers may
|
|
// pass an empty string for the algorithm in which case the AlgorithmSigner
|
|
// will use its default algorithm.
|
|
SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
|
|
}
|
|
|
|
type rsaPublicKey rsa.PublicKey
|
|
|
|
func (r *rsaPublicKey) Type() string {
|
|
return "ssh-rsa"
|
|
}
|
|
|
|
// parseRSA parses an RSA key according to RFC 4253, section 6.6.
|
|
func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
E *big.Int
|
|
N *big.Int
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
if w.E.BitLen() > 24 {
|
|
return nil, nil, errors.New("ssh: exponent too large")
|
|
}
|
|
e := w.E.Int64()
|
|
if e < 3 || e&1 == 0 {
|
|
return nil, nil, errors.New("ssh: incorrect exponent")
|
|
}
|
|
|
|
var key rsa.PublicKey
|
|
key.E = int(e)
|
|
key.N = w.N
|
|
return (*rsaPublicKey)(&key), w.Rest, nil
|
|
}
|
|
|
|
func (r *rsaPublicKey) Marshal() []byte {
|
|
e := new(big.Int).SetInt64(int64(r.E))
|
|
// RSA publickey struct layout should match the struct used by
|
|
// parseRSACert in the x/crypto/ssh/agent package.
|
|
wirekey := struct {
|
|
Name string
|
|
E *big.Int
|
|
N *big.Int
|
|
}{
|
|
KeyAlgoRSA,
|
|
e,
|
|
r.N,
|
|
}
|
|
return Marshal(&wirekey)
|
|
}
|
|
|
|
func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
var hash crypto.Hash
|
|
switch sig.Format {
|
|
case SigAlgoRSA:
|
|
hash = crypto.SHA1
|
|
case SigAlgoRSASHA2256:
|
|
hash = crypto.SHA256
|
|
case SigAlgoRSASHA2512:
|
|
hash = crypto.SHA512
|
|
default:
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
|
|
}
|
|
h := hash.New()
|
|
h.Write(data)
|
|
digest := h.Sum(nil)
|
|
return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
|
|
}
|
|
|
|
func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
return (*rsa.PublicKey)(r)
|
|
}
|
|
|
|
type dsaPublicKey dsa.PublicKey
|
|
|
|
func (k *dsaPublicKey) Type() string {
|
|
return "ssh-dss"
|
|
}
|
|
|
|
func checkDSAParams(param *dsa.Parameters) error {
|
|
// SSH specifies FIPS 186-2, which only provided a single size
|
|
// (1024 bits) DSA key. FIPS 186-3 allows for larger key
|
|
// sizes, which would confuse SSH.
|
|
if l := param.P.BitLen(); l != 1024 {
|
|
return fmt.Errorf("ssh: unsupported DSA key size %d", l)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// parseDSA parses an DSA key according to RFC 4253, section 6.6.
|
|
func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
P, Q, G, Y *big.Int
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
param := dsa.Parameters{
|
|
P: w.P,
|
|
Q: w.Q,
|
|
G: w.G,
|
|
}
|
|
if err := checkDSAParams(¶m); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
key := &dsaPublicKey{
|
|
Parameters: param,
|
|
Y: w.Y,
|
|
}
|
|
return key, w.Rest, nil
|
|
}
|
|
|
|
func (k *dsaPublicKey) Marshal() []byte {
|
|
// DSA publickey struct layout should match the struct used by
|
|
// parseDSACert in the x/crypto/ssh/agent package.
|
|
w := struct {
|
|
Name string
|
|
P, Q, G, Y *big.Int
|
|
}{
|
|
k.Type(),
|
|
k.P,
|
|
k.Q,
|
|
k.G,
|
|
k.Y,
|
|
}
|
|
|
|
return Marshal(&w)
|
|
}
|
|
|
|
func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
if sig.Format != k.Type() {
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
}
|
|
h := crypto.SHA1.New()
|
|
h.Write(data)
|
|
digest := h.Sum(nil)
|
|
|
|
// Per RFC 4253, section 6.6,
|
|
// The value for 'dss_signature_blob' is encoded as a string containing
|
|
// r, followed by s (which are 160-bit integers, without lengths or
|
|
// padding, unsigned, and in network byte order).
|
|
// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
|
|
if len(sig.Blob) != 40 {
|
|
return errors.New("ssh: DSA signature parse error")
|
|
}
|
|
r := new(big.Int).SetBytes(sig.Blob[:20])
|
|
s := new(big.Int).SetBytes(sig.Blob[20:])
|
|
if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
|
|
return nil
|
|
}
|
|
return errors.New("ssh: signature did not verify")
|
|
}
|
|
|
|
func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
return (*dsa.PublicKey)(k)
|
|
}
|
|
|
|
type dsaPrivateKey struct {
|
|
*dsa.PrivateKey
|
|
}
|
|
|
|
func (k *dsaPrivateKey) PublicKey() PublicKey {
|
|
return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
|
|
}
|
|
|
|
func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
|
|
return k.SignWithAlgorithm(rand, data, "")
|
|
}
|
|
|
|
func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
|
|
if algorithm != "" && algorithm != k.PublicKey().Type() {
|
|
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
|
|
}
|
|
|
|
h := crypto.SHA1.New()
|
|
h.Write(data)
|
|
digest := h.Sum(nil)
|
|
r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
sig := make([]byte, 40)
|
|
rb := r.Bytes()
|
|
sb := s.Bytes()
|
|
|
|
copy(sig[20-len(rb):20], rb)
|
|
copy(sig[40-len(sb):], sb)
|
|
|
|
return &Signature{
|
|
Format: k.PublicKey().Type(),
|
|
Blob: sig,
|
|
}, nil
|
|
}
|
|
|
|
type ecdsaPublicKey ecdsa.PublicKey
|
|
|
|
func (k *ecdsaPublicKey) Type() string {
|
|
return "ecdsa-sha2-" + k.nistID()
|
|
}
|
|
|
|
func (k *ecdsaPublicKey) nistID() string {
|
|
switch k.Params().BitSize {
|
|
case 256:
|
|
return "nistp256"
|
|
case 384:
|
|
return "nistp384"
|
|
case 521:
|
|
return "nistp521"
|
|
}
|
|
panic("ssh: unsupported ecdsa key size")
|
|
}
|
|
|
|
type ed25519PublicKey ed25519.PublicKey
|
|
|
|
func (k ed25519PublicKey) Type() string {
|
|
return KeyAlgoED25519
|
|
}
|
|
|
|
func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
KeyBytes []byte
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
|
|
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
|
}
|
|
|
|
return ed25519PublicKey(w.KeyBytes), w.Rest, nil
|
|
}
|
|
|
|
func (k ed25519PublicKey) Marshal() []byte {
|
|
w := struct {
|
|
Name string
|
|
KeyBytes []byte
|
|
}{
|
|
KeyAlgoED25519,
|
|
[]byte(k),
|
|
}
|
|
return Marshal(&w)
|
|
}
|
|
|
|
func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
|
|
if sig.Format != k.Type() {
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
}
|
|
if l := len(k); l != ed25519.PublicKeySize {
|
|
return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
|
|
}
|
|
|
|
if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
|
|
return errors.New("ssh: signature did not verify")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
return ed25519.PublicKey(k)
|
|
}
|
|
|
|
func supportedEllipticCurve(curve elliptic.Curve) bool {
|
|
return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
|
|
}
|
|
|
|
// ecHash returns the hash to match the given elliptic curve, see RFC
|
|
// 5656, section 6.2.1
|
|
func ecHash(curve elliptic.Curve) crypto.Hash {
|
|
bitSize := curve.Params().BitSize
|
|
switch {
|
|
case bitSize <= 256:
|
|
return crypto.SHA256
|
|
case bitSize <= 384:
|
|
return crypto.SHA384
|
|
}
|
|
return crypto.SHA512
|
|
}
|
|
|
|
// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
|
|
func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
Curve string
|
|
KeyBytes []byte
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
key := new(ecdsa.PublicKey)
|
|
|
|
switch w.Curve {
|
|
case "nistp256":
|
|
key.Curve = elliptic.P256()
|
|
case "nistp384":
|
|
key.Curve = elliptic.P384()
|
|
case "nistp521":
|
|
key.Curve = elliptic.P521()
|
|
default:
|
|
return nil, nil, errors.New("ssh: unsupported curve")
|
|
}
|
|
|
|
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
|
|
if key.X == nil || key.Y == nil {
|
|
return nil, nil, errors.New("ssh: invalid curve point")
|
|
}
|
|
return (*ecdsaPublicKey)(key), w.Rest, nil
|
|
}
|
|
|
|
func (k *ecdsaPublicKey) Marshal() []byte {
|
|
// See RFC 5656, section 3.1.
|
|
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
|
|
// ECDSA publickey struct layout should match the struct used by
|
|
// parseECDSACert in the x/crypto/ssh/agent package.
|
|
w := struct {
|
|
Name string
|
|
ID string
|
|
Key []byte
|
|
}{
|
|
k.Type(),
|
|
k.nistID(),
|
|
keyBytes,
|
|
}
|
|
|
|
return Marshal(&w)
|
|
}
|
|
|
|
func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
|
|
if sig.Format != k.Type() {
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
}
|
|
|
|
h := ecHash(k.Curve).New()
|
|
h.Write(data)
|
|
digest := h.Sum(nil)
|
|
|
|
// Per RFC 5656, section 3.1.2,
|
|
// The ecdsa_signature_blob value has the following specific encoding:
|
|
// mpint r
|
|
// mpint s
|
|
var ecSig struct {
|
|
R *big.Int
|
|
S *big.Int
|
|
}
|
|
|
|
if err := Unmarshal(sig.Blob, &ecSig); err != nil {
|
|
return err
|
|
}
|
|
|
|
if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
|
|
return nil
|
|
}
|
|
return errors.New("ssh: signature did not verify")
|
|
}
|
|
|
|
func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
|
|
return (*ecdsa.PublicKey)(k)
|
|
}
|
|
|
|
// skFields holds the additional fields present in U2F/FIDO2 signatures.
|
|
// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
|
|
type skFields struct {
|
|
// Flags contains U2F/FIDO2 flags such as 'user present'
|
|
Flags byte
|
|
// Counter is a monotonic signature counter which can be
|
|
// used to detect concurrent use of a private key, should
|
|
// it be extracted from hardware.
|
|
Counter uint32
|
|
}
|
|
|
|
type skECDSAPublicKey struct {
|
|
// application is a URL-like string, typically "ssh:" for SSH.
|
|
// see openssh/PROTOCOL.u2f for details.
|
|
application string
|
|
ecdsa.PublicKey
|
|
}
|
|
|
|
func (k *skECDSAPublicKey) Type() string {
|
|
return KeyAlgoSKECDSA256
|
|
}
|
|
|
|
func (k *skECDSAPublicKey) nistID() string {
|
|
return "nistp256"
|
|
}
|
|
|
|
func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
Curve string
|
|
KeyBytes []byte
|
|
Application string
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
key := new(skECDSAPublicKey)
|
|
key.application = w.Application
|
|
|
|
if w.Curve != "nistp256" {
|
|
return nil, nil, errors.New("ssh: unsupported curve")
|
|
}
|
|
key.Curve = elliptic.P256()
|
|
|
|
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
|
|
if key.X == nil || key.Y == nil {
|
|
return nil, nil, errors.New("ssh: invalid curve point")
|
|
}
|
|
|
|
return key, w.Rest, nil
|
|
}
|
|
|
|
func (k *skECDSAPublicKey) Marshal() []byte {
|
|
// See RFC 5656, section 3.1.
|
|
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
|
|
w := struct {
|
|
Name string
|
|
ID string
|
|
Key []byte
|
|
Application string
|
|
}{
|
|
k.Type(),
|
|
k.nistID(),
|
|
keyBytes,
|
|
k.application,
|
|
}
|
|
|
|
return Marshal(&w)
|
|
}
|
|
|
|
func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
|
|
if sig.Format != k.Type() {
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
}
|
|
|
|
h := ecHash(k.Curve).New()
|
|
h.Write([]byte(k.application))
|
|
appDigest := h.Sum(nil)
|
|
|
|
h.Reset()
|
|
h.Write(data)
|
|
dataDigest := h.Sum(nil)
|
|
|
|
var ecSig struct {
|
|
R *big.Int
|
|
S *big.Int
|
|
}
|
|
if err := Unmarshal(sig.Blob, &ecSig); err != nil {
|
|
return err
|
|
}
|
|
|
|
var skf skFields
|
|
if err := Unmarshal(sig.Rest, &skf); err != nil {
|
|
return err
|
|
}
|
|
|
|
blob := struct {
|
|
ApplicationDigest []byte `ssh:"rest"`
|
|
Flags byte
|
|
Counter uint32
|
|
MessageDigest []byte `ssh:"rest"`
|
|
}{
|
|
appDigest,
|
|
skf.Flags,
|
|
skf.Counter,
|
|
dataDigest,
|
|
}
|
|
|
|
original := Marshal(blob)
|
|
|
|
h.Reset()
|
|
h.Write(original)
|
|
digest := h.Sum(nil)
|
|
|
|
if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
|
|
return nil
|
|
}
|
|
return errors.New("ssh: signature did not verify")
|
|
}
|
|
|
|
type skEd25519PublicKey struct {
|
|
// application is a URL-like string, typically "ssh:" for SSH.
|
|
// see openssh/PROTOCOL.u2f for details.
|
|
application string
|
|
ed25519.PublicKey
|
|
}
|
|
|
|
func (k *skEd25519PublicKey) Type() string {
|
|
return KeyAlgoSKED25519
|
|
}
|
|
|
|
func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
|
|
var w struct {
|
|
KeyBytes []byte
|
|
Application string
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
|
|
if err := Unmarshal(in, &w); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
|
|
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
|
}
|
|
|
|
key := new(skEd25519PublicKey)
|
|
key.application = w.Application
|
|
key.PublicKey = ed25519.PublicKey(w.KeyBytes)
|
|
|
|
return key, w.Rest, nil
|
|
}
|
|
|
|
func (k *skEd25519PublicKey) Marshal() []byte {
|
|
w := struct {
|
|
Name string
|
|
KeyBytes []byte
|
|
Application string
|
|
}{
|
|
KeyAlgoSKED25519,
|
|
[]byte(k.PublicKey),
|
|
k.application,
|
|
}
|
|
return Marshal(&w)
|
|
}
|
|
|
|
func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
|
|
if sig.Format != k.Type() {
|
|
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
|
|
}
|
|
if l := len(k.PublicKey); l != ed25519.PublicKeySize {
|
|
return fmt.Errorf("invalid size %d for Ed25519 public key", l)
|
|
}
|
|
|
|
h := sha256.New()
|
|
h.Write([]byte(k.application))
|
|
appDigest := h.Sum(nil)
|
|
|
|
h.Reset()
|
|
h.Write(data)
|
|
dataDigest := h.Sum(nil)
|
|
|
|
var edSig struct {
|
|
Signature []byte `ssh:"rest"`
|
|
}
|
|
|
|
if err := Unmarshal(sig.Blob, &edSig); err != nil {
|
|
return err
|
|
}
|
|
|
|
var skf skFields
|
|
if err := Unmarshal(sig.Rest, &skf); err != nil {
|
|
return err
|
|
}
|
|
|
|
blob := struct {
|
|
ApplicationDigest []byte `ssh:"rest"`
|
|
Flags byte
|
|
Counter uint32
|
|
MessageDigest []byte `ssh:"rest"`
|
|
}{
|
|
appDigest,
|
|
skf.Flags,
|
|
skf.Counter,
|
|
dataDigest,
|
|
}
|
|
|
|
original := Marshal(blob)
|
|
|
|
if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
|
|
return errors.New("ssh: signature did not verify")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
|
|
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
|
|
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
|
|
// P-521. DSA keys must use parameter size L1024N160.
|
|
func NewSignerFromKey(key interface{}) (Signer, error) {
|
|
switch key := key.(type) {
|
|
case crypto.Signer:
|
|
return NewSignerFromSigner(key)
|
|
case *dsa.PrivateKey:
|
|
return newDSAPrivateKey(key)
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
}
|
|
}
|
|
|
|
func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
|
|
if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &dsaPrivateKey{key}, nil
|
|
}
|
|
|
|
type wrappedSigner struct {
|
|
signer crypto.Signer
|
|
pubKey PublicKey
|
|
}
|
|
|
|
// NewSignerFromSigner takes any crypto.Signer implementation and
|
|
// returns a corresponding Signer interface. This can be used, for
|
|
// example, with keys kept in hardware modules.
|
|
func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
|
|
pubKey, err := NewPublicKey(signer.Public())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &wrappedSigner{signer, pubKey}, nil
|
|
}
|
|
|
|
func (s *wrappedSigner) PublicKey() PublicKey {
|
|
return s.pubKey
|
|
}
|
|
|
|
func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
|
|
return s.SignWithAlgorithm(rand, data, "")
|
|
}
|
|
|
|
func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
|
|
var hashFunc crypto.Hash
|
|
|
|
if _, ok := s.pubKey.(*rsaPublicKey); ok {
|
|
// RSA keys support a few hash functions determined by the requested signature algorithm
|
|
switch algorithm {
|
|
case "", SigAlgoRSA:
|
|
algorithm = SigAlgoRSA
|
|
hashFunc = crypto.SHA1
|
|
case SigAlgoRSASHA2256:
|
|
hashFunc = crypto.SHA256
|
|
case SigAlgoRSASHA2512:
|
|
hashFunc = crypto.SHA512
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
|
|
}
|
|
} else {
|
|
// The only supported algorithm for all other key types is the same as the type of the key
|
|
if algorithm == "" {
|
|
algorithm = s.pubKey.Type()
|
|
} else if algorithm != s.pubKey.Type() {
|
|
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
|
|
}
|
|
|
|
switch key := s.pubKey.(type) {
|
|
case *dsaPublicKey:
|
|
hashFunc = crypto.SHA1
|
|
case *ecdsaPublicKey:
|
|
hashFunc = ecHash(key.Curve)
|
|
case ed25519PublicKey:
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
}
|
|
}
|
|
|
|
var digest []byte
|
|
if hashFunc != 0 {
|
|
h := hashFunc.New()
|
|
h.Write(data)
|
|
digest = h.Sum(nil)
|
|
} else {
|
|
digest = data
|
|
}
|
|
|
|
signature, err := s.signer.Sign(rand, digest, hashFunc)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
|
|
// for ECDSA and DSA, but that's not the encoding expected by SSH, so
|
|
// re-encode.
|
|
switch s.pubKey.(type) {
|
|
case *ecdsaPublicKey, *dsaPublicKey:
|
|
type asn1Signature struct {
|
|
R, S *big.Int
|
|
}
|
|
asn1Sig := new(asn1Signature)
|
|
_, err := asn1.Unmarshal(signature, asn1Sig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch s.pubKey.(type) {
|
|
case *ecdsaPublicKey:
|
|
signature = Marshal(asn1Sig)
|
|
|
|
case *dsaPublicKey:
|
|
signature = make([]byte, 40)
|
|
r := asn1Sig.R.Bytes()
|
|
s := asn1Sig.S.Bytes()
|
|
copy(signature[20-len(r):20], r)
|
|
copy(signature[40-len(s):40], s)
|
|
}
|
|
}
|
|
|
|
return &Signature{
|
|
Format: algorithm,
|
|
Blob: signature,
|
|
}, nil
|
|
}
|
|
|
|
// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
|
|
// or ed25519.PublicKey returns a corresponding PublicKey instance.
|
|
// ECDSA keys must use P-256, P-384 or P-521.
|
|
func NewPublicKey(key interface{}) (PublicKey, error) {
|
|
switch key := key.(type) {
|
|
case *rsa.PublicKey:
|
|
return (*rsaPublicKey)(key), nil
|
|
case *ecdsa.PublicKey:
|
|
if !supportedEllipticCurve(key.Curve) {
|
|
return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
|
|
}
|
|
return (*ecdsaPublicKey)(key), nil
|
|
case *dsa.PublicKey:
|
|
return (*dsaPublicKey)(key), nil
|
|
case ed25519.PublicKey:
|
|
if l := len(key); l != ed25519.PublicKeySize {
|
|
return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
|
|
}
|
|
return ed25519PublicKey(key), nil
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
|
|
}
|
|
}
|
|
|
|
// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
|
|
// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
|
|
// will return a PassphraseMissingError.
|
|
func ParsePrivateKey(pemBytes []byte) (Signer, error) {
|
|
key, err := ParseRawPrivateKey(pemBytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return NewSignerFromKey(key)
|
|
}
|
|
|
|
// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
|
|
// key and passphrase. It supports the same keys as
|
|
// ParseRawPrivateKeyWithPassphrase.
|
|
func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
|
|
key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return NewSignerFromKey(key)
|
|
}
|
|
|
|
// encryptedBlock tells whether a private key is
|
|
// encrypted by examining its Proc-Type header
|
|
// for a mention of ENCRYPTED
|
|
// according to RFC 1421 Section 4.6.1.1.
|
|
func encryptedBlock(block *pem.Block) bool {
|
|
return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
|
|
}
|
|
|
|
// A PassphraseMissingError indicates that parsing this private key requires a
|
|
// passphrase. Use ParsePrivateKeyWithPassphrase.
|
|
type PassphraseMissingError struct {
|
|
// PublicKey will be set if the private key format includes an unencrypted
|
|
// public key along with the encrypted private key.
|
|
PublicKey PublicKey
|
|
}
|
|
|
|
func (*PassphraseMissingError) Error() string {
|
|
return "ssh: this private key is passphrase protected"
|
|
}
|
|
|
|
// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
|
|
// supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys. If the
|
|
// private key is encrypted, it will return a PassphraseMissingError.
|
|
func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
|
|
block, _ := pem.Decode(pemBytes)
|
|
if block == nil {
|
|
return nil, errors.New("ssh: no key found")
|
|
}
|
|
|
|
if encryptedBlock(block) {
|
|
return nil, &PassphraseMissingError{}
|
|
}
|
|
|
|
switch block.Type {
|
|
case "RSA PRIVATE KEY":
|
|
return x509.ParsePKCS1PrivateKey(block.Bytes)
|
|
// RFC5208 - https://tools.ietf.org/html/rfc5208
|
|
case "PRIVATE KEY":
|
|
return x509.ParsePKCS8PrivateKey(block.Bytes)
|
|
case "EC PRIVATE KEY":
|
|
return x509.ParseECPrivateKey(block.Bytes)
|
|
case "DSA PRIVATE KEY":
|
|
return ParseDSAPrivateKey(block.Bytes)
|
|
case "OPENSSH PRIVATE KEY":
|
|
return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
|
}
|
|
}
|
|
|
|
// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
|
|
// passphrase from a PEM encoded private key. If the passphrase is wrong, it
|
|
// will return x509.IncorrectPasswordError.
|
|
func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
|
|
block, _ := pem.Decode(pemBytes)
|
|
if block == nil {
|
|
return nil, errors.New("ssh: no key found")
|
|
}
|
|
|
|
if block.Type == "OPENSSH PRIVATE KEY" {
|
|
return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
|
|
}
|
|
|
|
if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
|
|
return nil, errors.New("ssh: not an encrypted key")
|
|
}
|
|
|
|
buf, err := x509.DecryptPEMBlock(block, passphrase)
|
|
if err != nil {
|
|
if err == x509.IncorrectPasswordError {
|
|
return nil, err
|
|
}
|
|
return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
|
|
}
|
|
|
|
switch block.Type {
|
|
case "RSA PRIVATE KEY":
|
|
return x509.ParsePKCS1PrivateKey(buf)
|
|
case "EC PRIVATE KEY":
|
|
return x509.ParseECPrivateKey(buf)
|
|
case "DSA PRIVATE KEY":
|
|
return ParseDSAPrivateKey(buf)
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
|
|
}
|
|
}
|
|
|
|
// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
|
|
// specified by the OpenSSL DSA man page.
|
|
func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
|
|
var k struct {
|
|
Version int
|
|
P *big.Int
|
|
Q *big.Int
|
|
G *big.Int
|
|
Pub *big.Int
|
|
Priv *big.Int
|
|
}
|
|
rest, err := asn1.Unmarshal(der, &k)
|
|
if err != nil {
|
|
return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
|
|
}
|
|
if len(rest) > 0 {
|
|
return nil, errors.New("ssh: garbage after DSA key")
|
|
}
|
|
|
|
return &dsa.PrivateKey{
|
|
PublicKey: dsa.PublicKey{
|
|
Parameters: dsa.Parameters{
|
|
P: k.P,
|
|
Q: k.Q,
|
|
G: k.G,
|
|
},
|
|
Y: k.Pub,
|
|
},
|
|
X: k.Priv,
|
|
}, nil
|
|
}
|
|
|
|
func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
|
|
if kdfName != "none" || cipherName != "none" {
|
|
return nil, &PassphraseMissingError{}
|
|
}
|
|
if kdfOpts != "" {
|
|
return nil, errors.New("ssh: invalid openssh private key")
|
|
}
|
|
return privKeyBlock, nil
|
|
}
|
|
|
|
func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
|
|
return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
|
|
if kdfName == "none" || cipherName == "none" {
|
|
return nil, errors.New("ssh: key is not password protected")
|
|
}
|
|
if kdfName != "bcrypt" {
|
|
return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
|
|
}
|
|
|
|
var opts struct {
|
|
Salt string
|
|
Rounds uint32
|
|
}
|
|
if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
key, iv := k[:32], k[32:]
|
|
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
switch cipherName {
|
|
case "aes256-ctr":
|
|
ctr := cipher.NewCTR(c, iv)
|
|
ctr.XORKeyStream(privKeyBlock, privKeyBlock)
|
|
case "aes256-cbc":
|
|
if len(privKeyBlock)%c.BlockSize() != 0 {
|
|
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
|
|
}
|
|
cbc := cipher.NewCBCDecrypter(c, iv)
|
|
cbc.CryptBlocks(privKeyBlock, privKeyBlock)
|
|
default:
|
|
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
|
|
}
|
|
|
|
return privKeyBlock, nil
|
|
}
|
|
}
|
|
|
|
type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
|
|
|
|
// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
|
|
// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
|
|
// as the decrypt function to parse an unencrypted private key. See
|
|
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
|
|
func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
|
|
const magic = "openssh-key-v1\x00"
|
|
if len(key) < len(magic) || string(key[:len(magic)]) != magic {
|
|
return nil, errors.New("ssh: invalid openssh private key format")
|
|
}
|
|
remaining := key[len(magic):]
|
|
|
|
var w struct {
|
|
CipherName string
|
|
KdfName string
|
|
KdfOpts string
|
|
NumKeys uint32
|
|
PubKey []byte
|
|
PrivKeyBlock []byte
|
|
}
|
|
|
|
if err := Unmarshal(remaining, &w); err != nil {
|
|
return nil, err
|
|
}
|
|
if w.NumKeys != 1 {
|
|
// We only support single key files, and so does OpenSSH.
|
|
// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
|
|
return nil, errors.New("ssh: multi-key files are not supported")
|
|
}
|
|
|
|
privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
|
|
if err != nil {
|
|
if err, ok := err.(*PassphraseMissingError); ok {
|
|
pub, errPub := ParsePublicKey(w.PubKey)
|
|
if errPub != nil {
|
|
return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
|
|
}
|
|
err.PublicKey = pub
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
pk1 := struct {
|
|
Check1 uint32
|
|
Check2 uint32
|
|
Keytype string
|
|
Rest []byte `ssh:"rest"`
|
|
}{}
|
|
|
|
if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
|
|
if w.CipherName != "none" {
|
|
return nil, x509.IncorrectPasswordError
|
|
}
|
|
return nil, errors.New("ssh: malformed OpenSSH key")
|
|
}
|
|
|
|
switch pk1.Keytype {
|
|
case KeyAlgoRSA:
|
|
// https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
|
|
key := struct {
|
|
N *big.Int
|
|
E *big.Int
|
|
D *big.Int
|
|
Iqmp *big.Int
|
|
P *big.Int
|
|
Q *big.Int
|
|
Comment string
|
|
Pad []byte `ssh:"rest"`
|
|
}{}
|
|
|
|
if err := Unmarshal(pk1.Rest, &key); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pk := &rsa.PrivateKey{
|
|
PublicKey: rsa.PublicKey{
|
|
N: key.N,
|
|
E: int(key.E.Int64()),
|
|
},
|
|
D: key.D,
|
|
Primes: []*big.Int{key.P, key.Q},
|
|
}
|
|
|
|
if err := pk.Validate(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pk.Precompute()
|
|
|
|
return pk, nil
|
|
case KeyAlgoED25519:
|
|
key := struct {
|
|
Pub []byte
|
|
Priv []byte
|
|
Comment string
|
|
Pad []byte `ssh:"rest"`
|
|
}{}
|
|
|
|
if err := Unmarshal(pk1.Rest, &key); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if len(key.Priv) != ed25519.PrivateKeySize {
|
|
return nil, errors.New("ssh: private key unexpected length")
|
|
}
|
|
|
|
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
|
|
copy(pk, key.Priv)
|
|
return &pk, nil
|
|
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
|
|
key := struct {
|
|
Curve string
|
|
Pub []byte
|
|
D *big.Int
|
|
Comment string
|
|
Pad []byte `ssh:"rest"`
|
|
}{}
|
|
|
|
if err := Unmarshal(pk1.Rest, &key); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var curve elliptic.Curve
|
|
switch key.Curve {
|
|
case "nistp256":
|
|
curve = elliptic.P256()
|
|
case "nistp384":
|
|
curve = elliptic.P384()
|
|
case "nistp521":
|
|
curve = elliptic.P521()
|
|
default:
|
|
return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
|
|
}
|
|
|
|
X, Y := elliptic.Unmarshal(curve, key.Pub)
|
|
if X == nil || Y == nil {
|
|
return nil, errors.New("ssh: failed to unmarshal public key")
|
|
}
|
|
|
|
if key.D.Cmp(curve.Params().N) >= 0 {
|
|
return nil, errors.New("ssh: scalar is out of range")
|
|
}
|
|
|
|
x, y := curve.ScalarBaseMult(key.D.Bytes())
|
|
if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
|
|
return nil, errors.New("ssh: public key does not match private key")
|
|
}
|
|
|
|
return &ecdsa.PrivateKey{
|
|
PublicKey: ecdsa.PublicKey{
|
|
Curve: curve,
|
|
X: X,
|
|
Y: Y,
|
|
},
|
|
D: key.D,
|
|
}, nil
|
|
default:
|
|
return nil, errors.New("ssh: unhandled key type")
|
|
}
|
|
}
|
|
|
|
func checkOpenSSHKeyPadding(pad []byte) error {
|
|
for i, b := range pad {
|
|
if int(b) != i+1 {
|
|
return errors.New("ssh: padding not as expected")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// FingerprintLegacyMD5 returns the user presentation of the key's
|
|
// fingerprint as described by RFC 4716 section 4.
|
|
func FingerprintLegacyMD5(pubKey PublicKey) string {
|
|
md5sum := md5.Sum(pubKey.Marshal())
|
|
hexarray := make([]string, len(md5sum))
|
|
for i, c := range md5sum {
|
|
hexarray[i] = hex.EncodeToString([]byte{c})
|
|
}
|
|
return strings.Join(hexarray, ":")
|
|
}
|
|
|
|
// FingerprintSHA256 returns the user presentation of the key's
|
|
// fingerprint as unpadded base64 encoded sha256 hash.
|
|
// This format was introduced from OpenSSH 6.8.
|
|
// https://www.openssh.com/txt/release-6.8
|
|
// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
|
|
func FingerprintSHA256(pubKey PublicKey) string {
|
|
sha256sum := sha256.Sum256(pubKey.Marshal())
|
|
hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
|
|
return "SHA256:" + hash
|
|
}
|