0
0
Fork 0
mirror of https://github.com/denoland/rusty_v8.git synced 2025-03-11 06:26:44 -04:00
rusty-v8/src/isolate.rs
denobot c53d85114e
Rolling to V8 10.4.132.5 (#1002)
Co-authored-by: Divy Srivastava <dj.srivastava23@gmail.com>
2022-06-15 00:26:50 +02:00

1279 lines
41 KiB
Rust

// Copyright 2019-2021 the Deno authors. All rights reserved. MIT license.
use crate::function::FunctionCallbackInfo;
use crate::handle::FinalizerMap;
use crate::isolate_create_params::raw;
use crate::isolate_create_params::CreateParams;
use crate::promise::PromiseRejectMessage;
use crate::scope::data::ScopeData;
use crate::support::MapFnFrom;
use crate::support::MapFnTo;
use crate::support::Opaque;
use crate::support::ToCFn;
use crate::support::UnitType;
use crate::wasm::trampoline;
use crate::wasm::WasmStreaming;
use crate::Array;
use crate::CallbackScope;
use crate::Context;
use crate::Data;
use crate::FixedArray;
use crate::Function;
use crate::HandleScope;
use crate::Local;
use crate::Message;
use crate::Module;
use crate::Object;
use crate::Promise;
use crate::String;
use crate::Value;
use std::any::Any;
use std::any::TypeId;
use std::collections::HashMap;
use std::ffi::c_void;
use std::fmt::{self, Debug, Formatter};
use std::hash::BuildHasher;
use std::hash::Hasher;
use std::mem::align_of;
use std::mem::forget;
use std::mem::needs_drop;
use std::mem::size_of;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ops::DerefMut;
use std::os::raw::c_char;
use std::ptr;
use std::ptr::drop_in_place;
use std::ptr::null_mut;
use std::ptr::NonNull;
use std::sync::Arc;
use std::sync::Mutex;
/// Policy for running microtasks:
/// - explicit: microtasks are invoked with the
/// Isolate::PerformMicrotaskCheckpoint() method;
/// - auto: microtasks are invoked when the script call depth decrements
/// to zero.
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(C)]
pub enum MicrotasksPolicy {
Explicit = 0,
// Scoped = 1 (RAII) is omitted for now, doesn't quite map to idiomatic Rust.
Auto = 2,
}
/// PromiseHook with type Init is called when a new promise is
/// created. When a new promise is created as part of the chain in the
/// case of Promise.then or in the intermediate promises created by
/// Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise
/// otherwise we pass undefined.
///
/// PromiseHook with type Resolve is called at the beginning of
/// resolve or reject function defined by CreateResolvingFunctions.
///
/// PromiseHook with type Before is called at the beginning of the
/// PromiseReactionJob.
///
/// PromiseHook with type After is called right at the end of the
/// PromiseReactionJob.
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(C)]
pub enum PromiseHookType {
Init,
Resolve,
Before,
After,
}
pub type MessageCallback = extern "C" fn(Local<Message>, Local<Value>);
pub type PromiseHook =
extern "C" fn(PromiseHookType, Local<Promise>, Local<Value>);
pub type PromiseRejectCallback = extern "C" fn(PromiseRejectMessage);
/// HostInitializeImportMetaObjectCallback is called the first time import.meta
/// is accessed for a module. Subsequent access will reuse the same value.
///
/// The method combines two implementation-defined abstract operations into one:
/// HostGetImportMetaProperties and HostFinalizeImportMeta.
///
/// The embedder should use v8::Object::CreateDataProperty to add properties on
/// the meta object.
pub type HostInitializeImportMetaObjectCallback =
extern "C" fn(Local<Context>, Local<Module>, Local<Object>);
/// HostImportModuleDynamicallyCallback is called when we require the
/// embedder to load a module. This is used as part of the dynamic
/// import syntax.
///
/// The referrer contains metadata about the script/module that calls
/// import.
///
/// The specifier is the name of the module that should be imported.
///
/// The embedder must compile, instantiate, evaluate the Module, and
/// obtain it's namespace object.
///
/// The Promise returned from this function is forwarded to userland
/// JavaScript. The embedder must resolve this promise with the module
/// namespace object. In case of an exception, the embedder must reject
/// this promise with the exception. If the promise creation itself
/// fails (e.g. due to stack overflow), the embedder must propagate
/// that exception by returning an empty MaybeLocal.
pub type HostImportModuleDynamicallyCallback = extern "C" fn(
Local<Context>,
Local<Data>,
Local<Value>,
Local<String>,
Local<FixedArray>,
) -> *mut Promise;
/// `HostCreateShadowRealmContextCallback` is called each time a `ShadowRealm`
/// is being constructed. You can use [`HandleScope::get_current_context`] to
/// get the [`Context`] in which the constructor is being run.
///
/// The method combines [`Context`] creation and the implementation-defined
/// abstract operation `HostInitializeShadowRealm` into one.
///
/// The embedder should use [`Context::new`] to create a new context. If the
/// creation fails, the embedder must propagate that exception by returning
/// [`None`].
pub type HostCreateShadowRealmContextCallback =
for<'s> fn(scope: &mut HandleScope<'s>) -> Option<Local<'s, Context>>;
pub type InterruptCallback =
extern "C" fn(isolate: &mut Isolate, data: *mut c_void);
pub type NearHeapLimitCallback = extern "C" fn(
data: *mut c_void,
current_heap_limit: usize,
initial_heap_limit: usize,
) -> usize;
#[repr(C)]
pub struct OomDetails {
pub is_heap_oom: bool,
pub detail: *const c_char,
}
pub type OomErrorCallback =
extern "C" fn(location: *const c_char, details: &OomDetails);
/// Collection of V8 heap information.
///
/// Instances of this class can be passed to v8::Isolate::GetHeapStatistics to
/// get heap statistics from V8.
// Must be >= sizeof(v8::HeapStatistics), see v8__HeapStatistics__CONSTRUCT().
#[repr(C)]
#[derive(Debug)]
pub struct HeapStatistics([usize; 16]);
// Windows x64 ABI: MaybeLocal<Value> returned on the stack.
#[cfg(target_os = "windows")]
pub type PrepareStackTraceCallback<'s> = extern "C" fn(
*mut *const Value,
Local<'s, Context>,
Local<'s, Value>,
Local<'s, Array>,
) -> *mut *const Value;
// System V ABI: MaybeLocal<Value> returned in a register.
#[cfg(not(target_os = "windows"))]
pub type PrepareStackTraceCallback<'s> = extern "C" fn(
Local<'s, Context>,
Local<'s, Value>,
Local<'s, Array>,
) -> *const Value;
extern "C" {
fn v8__Isolate__New(params: *const raw::CreateParams) -> *mut Isolate;
fn v8__Isolate__Dispose(this: *mut Isolate);
fn v8__Isolate__SetData(this: *mut Isolate, slot: u32, data: *mut c_void);
fn v8__Isolate__GetData(this: *const Isolate, slot: u32) -> *mut c_void;
fn v8__Isolate__GetNumberOfDataSlots(this: *const Isolate) -> u32;
fn v8__Isolate__Enter(this: *mut Isolate);
fn v8__Isolate__Exit(this: *mut Isolate);
fn v8__Isolate__ClearKeptObjects(isolate: *mut Isolate);
fn v8__Isolate__LowMemoryNotification(isolate: *mut Isolate);
fn v8__Isolate__GetHeapStatistics(this: *mut Isolate, s: *mut HeapStatistics);
fn v8__Isolate__SetCaptureStackTraceForUncaughtExceptions(
this: *mut Isolate,
caputre: bool,
frame_limit: i32,
);
fn v8__Isolate__AddMessageListener(
isolate: *mut Isolate,
callback: MessageCallback,
) -> bool;
fn v8__Isolate__AddNearHeapLimitCallback(
isolate: *mut Isolate,
callback: NearHeapLimitCallback,
data: *mut c_void,
);
fn v8__Isolate__RemoveNearHeapLimitCallback(
isolate: *mut Isolate,
callback: NearHeapLimitCallback,
heap_limit: usize,
);
fn v8__Isolate__SetOOMErrorHandler(
isolate: *mut Isolate,
callback: OomErrorCallback,
);
fn v8__Isolate__AdjustAmountOfExternalAllocatedMemory(
isolate: *mut Isolate,
change_in_bytes: i64,
) -> i64;
fn v8__Isolate__SetPrepareStackTraceCallback(
isolate: *mut Isolate,
callback: PrepareStackTraceCallback,
);
fn v8__Isolate__SetPromiseHook(isolate: *mut Isolate, hook: PromiseHook);
fn v8__Isolate__SetPromiseRejectCallback(
isolate: *mut Isolate,
callback: PromiseRejectCallback,
);
fn v8__Isolate__SetHostInitializeImportMetaObjectCallback(
isolate: *mut Isolate,
callback: HostInitializeImportMetaObjectCallback,
);
fn v8__Isolate__SetHostImportModuleDynamicallyCallback(
isolate: *mut Isolate,
callback: HostImportModuleDynamicallyCallback,
);
#[cfg(not(target_os = "windows"))]
fn v8__Isolate__SetHostCreateShadowRealmContextCallback(
isolate: *mut Isolate,
callback: extern "C" fn(initiator_context: Local<Context>) -> *mut Context,
);
#[cfg(target_os = "windows")]
fn v8__Isolate__SetHostCreateShadowRealmContextCallback(
isolate: *mut Isolate,
callback: extern "C" fn(
rv: *mut *mut Context,
initiator_context: Local<Context>,
) -> *mut *mut Context,
);
fn v8__Isolate__RequestInterrupt(
isolate: *const Isolate,
callback: InterruptCallback,
data: *mut c_void,
);
fn v8__Isolate__TerminateExecution(isolate: *const Isolate);
fn v8__Isolate__IsExecutionTerminating(isolate: *const Isolate) -> bool;
fn v8__Isolate__CancelTerminateExecution(isolate: *const Isolate);
fn v8__Isolate__GetMicrotasksPolicy(
isolate: *const Isolate,
) -> MicrotasksPolicy;
fn v8__Isolate__SetMicrotasksPolicy(
isolate: *mut Isolate,
policy: MicrotasksPolicy,
);
fn v8__Isolate__PerformMicrotaskCheckpoint(isolate: *mut Isolate);
fn v8__Isolate__EnqueueMicrotask(
isolate: *mut Isolate,
function: *const Function,
);
fn v8__Isolate__SetAllowAtomicsWait(isolate: *mut Isolate, allow: bool);
fn v8__Isolate__SetWasmStreamingCallback(
isolate: *mut Isolate,
callback: extern "C" fn(*const FunctionCallbackInfo),
);
fn v8__Isolate__HasPendingBackgroundTasks(isolate: *const Isolate) -> bool;
fn v8__HeapProfiler__TakeHeapSnapshot(
isolate: *mut Isolate,
callback: extern "C" fn(*mut c_void, *const u8, usize) -> bool,
arg: *mut c_void,
);
fn v8__HeapStatistics__CONSTRUCT(s: *mut MaybeUninit<HeapStatistics>);
fn v8__HeapStatistics__total_heap_size(s: *const HeapStatistics) -> usize;
fn v8__HeapStatistics__total_heap_size_executable(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__total_physical_size(s: *const HeapStatistics)
-> usize;
fn v8__HeapStatistics__total_available_size(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__total_global_handles_size(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__used_global_handles_size(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__used_heap_size(s: *const HeapStatistics) -> usize;
fn v8__HeapStatistics__heap_size_limit(s: *const HeapStatistics) -> usize;
fn v8__HeapStatistics__malloced_memory(s: *const HeapStatistics) -> usize;
fn v8__HeapStatistics__external_memory(s: *const HeapStatistics) -> usize;
fn v8__HeapStatistics__peak_malloced_memory(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__number_of_native_contexts(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__number_of_detached_contexts(
s: *const HeapStatistics,
) -> usize;
fn v8__HeapStatistics__does_zap_garbage(s: *const HeapStatistics) -> usize;
}
/// Isolate represents an isolated instance of the V8 engine. V8 isolates have
/// completely separate states. Objects from one isolate must not be used in
/// other isolates. The embedder can create multiple isolates and use them in
/// parallel in multiple threads. An isolate can be entered by at most one
/// thread at any given time. The Locker/Unlocker API must be used to
/// synchronize.
///
/// rusty_v8 note: Unlike in the C++ API, the Isolate is entered when it is
/// constructed and exited when dropped.
#[repr(C)]
#[derive(Debug)]
pub struct Isolate(Opaque);
impl Isolate {
const ANNEX_SLOT: u32 = 0;
const CURRENT_SCOPE_DATA_SLOT: u32 = 1;
const INTERNAL_SLOT_COUNT: u32 = 2;
/// Creates a new isolate. Does not change the currently entered
/// isolate.
///
/// When an isolate is no longer used its resources should be freed
/// by calling V8::dispose(). Using the delete operator is not allowed.
///
/// V8::initialize() must have run prior to this.
#[allow(clippy::new_ret_no_self)]
pub fn new(params: CreateParams) -> OwnedIsolate {
crate::V8::assert_initialized();
let (raw_create_params, create_param_allocations) = params.finalize();
let cxx_isolate = unsafe { v8__Isolate__New(&raw_create_params) };
let mut owned_isolate = OwnedIsolate::new(cxx_isolate);
ScopeData::new_root(&mut owned_isolate);
owned_isolate.create_annex(create_param_allocations);
unsafe {
owned_isolate.enter();
}
owned_isolate
}
/// Initial configuration parameters for a new Isolate.
pub fn create_params() -> CreateParams {
CreateParams::default()
}
pub fn thread_safe_handle(&self) -> IsolateHandle {
IsolateHandle::new(self)
}
/// See [`IsolateHandle::terminate_execution`]
pub fn terminate_execution(&self) -> bool {
self.thread_safe_handle().terminate_execution()
}
/// See [`IsolateHandle::cancel_terminate_execution`]
pub fn cancel_terminate_execution(&self) -> bool {
self.thread_safe_handle().cancel_terminate_execution()
}
/// See [`IsolateHandle::is_execution_terminating`]
pub fn is_execution_terminating(&self) -> bool {
self.thread_safe_handle().is_execution_terminating()
}
pub(crate) fn create_annex(
&mut self,
create_param_allocations: Box<dyn Any>,
) {
let annex_arc = Arc::new(IsolateAnnex::new(self, create_param_allocations));
let annex_ptr = Arc::into_raw(annex_arc);
unsafe {
assert!(v8__Isolate__GetData(self, Self::ANNEX_SLOT).is_null());
v8__Isolate__SetData(self, Self::ANNEX_SLOT, annex_ptr as *mut c_void);
};
}
fn get_annex(&self) -> &IsolateAnnex {
unsafe {
&*(v8__Isolate__GetData(self, Self::ANNEX_SLOT) as *const _
as *const IsolateAnnex)
}
}
fn get_annex_mut(&mut self) -> &mut IsolateAnnex {
unsafe {
&mut *(v8__Isolate__GetData(self, Self::ANNEX_SLOT) as *mut IsolateAnnex)
}
}
pub(crate) fn get_finalizer_map(&self) -> &FinalizerMap {
&self.get_annex().finalizer_map
}
pub(crate) fn get_finalizer_map_mut(&mut self) -> &mut FinalizerMap {
&mut self.get_annex_mut().finalizer_map
}
fn get_annex_arc(&self) -> Arc<IsolateAnnex> {
let annex_ptr = self.get_annex();
let annex_arc = unsafe { Arc::from_raw(annex_ptr) };
let _ = Arc::into_raw(annex_arc.clone());
annex_arc
}
/// Associate embedder-specific data with the isolate. `slot` has to be
/// between 0 and `Isolate::get_number_of_data_slots()`.
unsafe fn set_data(&mut self, slot: u32, ptr: *mut c_void) {
v8__Isolate__SetData(self, slot + Self::INTERNAL_SLOT_COUNT, ptr)
}
/// Retrieve embedder-specific data from the isolate.
/// Returns NULL if SetData has never been called for the given `slot`.
#[allow(dead_code)]
fn get_data(&self, slot: u32) -> *mut c_void {
unsafe { v8__Isolate__GetData(self, slot + Self::INTERNAL_SLOT_COUNT) }
}
/// Returns the maximum number of available embedder data slots. Valid slots
/// are in the range of 0 - `Isolate::get_number_of_data_slots() - 1`.
#[allow(dead_code)]
fn get_number_of_data_slots(&self) -> u32 {
unsafe {
v8__Isolate__GetNumberOfDataSlots(self) - Self::INTERNAL_SLOT_COUNT
}
}
/// Returns a pointer to the `ScopeData` struct for the current scope.
pub(crate) fn get_current_scope_data(&self) -> Option<NonNull<ScopeData>> {
let scope_data_ptr =
unsafe { v8__Isolate__GetData(self, Self::CURRENT_SCOPE_DATA_SLOT) };
NonNull::new(scope_data_ptr).map(NonNull::cast)
}
/// Updates the slot that stores a `ScopeData` pointer for the current scope.
pub(crate) fn set_current_scope_data(
&mut self,
scope_data: Option<NonNull<ScopeData>>,
) {
let scope_data_ptr = scope_data
.map(NonNull::cast)
.map(NonNull::as_ptr)
.unwrap_or_else(null_mut);
unsafe {
v8__Isolate__SetData(self, Self::CURRENT_SCOPE_DATA_SLOT, scope_data_ptr)
};
}
/// Get a reference to embedder data added with `set_slot()`.
pub fn get_slot<T: 'static>(&self) -> Option<&T> {
self
.get_annex()
.slots
.get(&TypeId::of::<T>())
.map(|slot| unsafe { slot.borrow::<T>() })
}
/// Get a mutable reference to embedder data added with `set_slot()`.
pub fn get_slot_mut<T: 'static>(&mut self) -> Option<&mut T> {
self
.get_annex_mut()
.slots
.get_mut(&TypeId::of::<T>())
.map(|slot| unsafe { slot.borrow_mut::<T>() })
}
/// Use with Isolate::get_slot and Isolate::get_slot_mut to associate state
/// with an Isolate.
///
/// This method gives ownership of value to the Isolate. Exactly one object of
/// each type can be associated with an Isolate. If called more than once with
/// an object of the same type, the earlier version will be dropped and
/// replaced.
///
/// Returns true if value was set without replacing an existing value.
///
/// The value will be dropped when the isolate is dropped.
pub fn set_slot<T: 'static>(&mut self, value: T) -> bool {
self
.get_annex_mut()
.slots
.insert(TypeId::of::<T>(), RawSlot::new(value))
.is_none()
}
/// Removes the embedder data added with `set_slot()` and returns it if it exists.
pub fn remove_slot<T: 'static>(&mut self) -> Option<T> {
self
.get_annex_mut()
.slots
.remove(&TypeId::of::<T>())
.map(|slot| unsafe { slot.into_inner::<T>() })
}
/// Sets this isolate as the entered one for the current thread.
/// Saves the previously entered one (if any), so that it can be
/// restored when exiting. Re-entering an isolate is allowed.
///
/// rusty_v8 note: Unlike in the C++ API, the isolate is entered when it is
/// constructed and exited when dropped.
pub unsafe fn enter(&mut self) {
v8__Isolate__Enter(self)
}
/// Exits this isolate by restoring the previously entered one in the
/// current thread. The isolate may still stay the same, if it was
/// entered more than once.
///
/// Requires: self == Isolate::GetCurrent().
///
/// rusty_v8 note: Unlike in the C++ API, the isolate is entered when it is
/// constructed and exited when dropped.
pub unsafe fn exit(&mut self) {
v8__Isolate__Exit(self)
}
/// Clears the set of objects held strongly by the heap. This set of
/// objects are originally built when a WeakRef is created or
/// successfully dereferenced.
///
/// This is invoked automatically after microtasks are run. See
/// MicrotasksPolicy for when microtasks are run.
///
/// This needs to be manually invoked only if the embedder is manually
/// running microtasks via a custom MicrotaskQueue class's PerformCheckpoint.
/// In that case, it is the embedder's responsibility to make this call at a
/// time which does not interrupt synchronous ECMAScript code execution.
pub fn clear_kept_objects(&mut self) {
unsafe { v8__Isolate__ClearKeptObjects(self) }
}
/// Optional notification that the system is running low on memory.
/// V8 uses these notifications to attempt to free memory.
pub fn low_memory_notification(&mut self) {
unsafe { v8__Isolate__LowMemoryNotification(self) }
}
/// Get statistics about the heap memory usage.
pub fn get_heap_statistics(&mut self, s: &mut HeapStatistics) {
unsafe { v8__Isolate__GetHeapStatistics(self, s) }
}
/// Tells V8 to capture current stack trace when uncaught exception occurs
/// and report it to the message listeners. The option is off by default.
pub fn set_capture_stack_trace_for_uncaught_exceptions(
&mut self,
capture: bool,
frame_limit: i32,
) {
unsafe {
v8__Isolate__SetCaptureStackTraceForUncaughtExceptions(
self,
capture,
frame_limit,
)
}
}
/// Adds a message listener (errors only).
///
/// The same message listener can be added more than once and in that
/// case it will be called more than once for each message.
///
/// The exception object will be passed to the callback.
pub fn add_message_listener(&mut self, callback: MessageCallback) -> bool {
unsafe { v8__Isolate__AddMessageListener(self, callback) }
}
/// This specifies the callback called when the stack property of Error
/// is accessed.
///
/// PrepareStackTraceCallback is called when the stack property of an error is
/// first accessed. The return value will be used as the stack value. If this
/// callback is registed, the |Error.prepareStackTrace| API will be disabled.
/// |sites| is an array of call sites, specified in
/// https://v8.dev/docs/stack-trace-api
pub fn set_prepare_stack_trace_callback<'s>(
&mut self,
callback: impl MapFnTo<PrepareStackTraceCallback<'s>>,
) {
// Note: the C++ API returns a MaybeLocal but V8 asserts at runtime when
// it's empty. That is, you can't return None and that's why the Rust API
// expects Local<Value> instead of Option<Local<Value>>.
unsafe {
v8__Isolate__SetPrepareStackTraceCallback(self, callback.map_fn_to())
};
}
/// Set the PromiseHook callback for various promise lifecycle
/// events.
pub fn set_promise_hook(&mut self, hook: PromiseHook) {
unsafe { v8__Isolate__SetPromiseHook(self, hook) }
}
/// Set callback to notify about promise reject with no handler, or
/// revocation of such a previous notification once the handler is added.
pub fn set_promise_reject_callback(
&mut self,
callback: PromiseRejectCallback,
) {
unsafe { v8__Isolate__SetPromiseRejectCallback(self, callback) }
}
/// This specifies the callback called by the upcoming importa.meta
/// language feature to retrieve host-defined meta data for a module.
pub fn set_host_initialize_import_meta_object_callback(
&mut self,
callback: HostInitializeImportMetaObjectCallback,
) {
unsafe {
v8__Isolate__SetHostInitializeImportMetaObjectCallback(self, callback)
}
}
/// This specifies the callback called by the upcoming dynamic
/// import() language feature to load modules.
pub fn set_host_import_module_dynamically_callback(
&mut self,
callback: HostImportModuleDynamicallyCallback,
) {
unsafe {
v8__Isolate__SetHostImportModuleDynamicallyCallback(self, callback)
}
}
/// This specifies the callback called by the upcoming `ShadowRealm`
/// construction language feature to retrieve host created globals.
pub fn set_host_create_shadow_realm_context_callback(
&mut self,
callback: HostCreateShadowRealmContextCallback,
) {
#[inline]
extern "C" fn rust_shadow_realm_callback(
initiator_context: Local<Context>,
) -> *mut Context {
let mut scope = unsafe { CallbackScope::new(initiator_context) };
let callback = scope
.get_slot::<HostCreateShadowRealmContextCallback>()
.unwrap();
let context = callback(&mut scope);
context
.map(|l| l.as_non_null().as_ptr())
.unwrap_or_else(null_mut)
}
// Windows x64 ABI: MaybeLocal<Context> must be returned on the stack.
#[cfg(target_os = "windows")]
extern "C" fn rust_shadow_realm_callback_windows(
rv: *mut *mut Context,
initiator_context: Local<Context>,
) -> *mut *mut Context {
let ret = rust_shadow_realm_callback(initiator_context);
unsafe {
rv.write(ret);
}
rv
}
let slot_didnt_exist_before = self.set_slot(callback);
if slot_didnt_exist_before {
unsafe {
#[cfg(target_os = "windows")]
v8__Isolate__SetHostCreateShadowRealmContextCallback(
self,
rust_shadow_realm_callback_windows,
);
#[cfg(not(target_os = "windows"))]
v8__Isolate__SetHostCreateShadowRealmContextCallback(
self,
rust_shadow_realm_callback,
);
}
}
}
/// Add a callback to invoke in case the heap size is close to the heap limit.
/// If multiple callbacks are added, only the most recently added callback is
/// invoked.
#[allow(clippy::not_unsafe_ptr_arg_deref)] // False positive.
pub fn add_near_heap_limit_callback(
&mut self,
callback: NearHeapLimitCallback,
data: *mut c_void,
) {
unsafe { v8__Isolate__AddNearHeapLimitCallback(self, callback, data) };
}
/// Remove the given callback and restore the heap limit to the given limit.
/// If the given limit is zero, then it is ignored. If the current heap size
/// is greater than the given limit, then the heap limit is restored to the
/// minimal limit that is possible for the current heap size.
pub fn remove_near_heap_limit_callback(
&mut self,
callback: NearHeapLimitCallback,
heap_limit: usize,
) {
unsafe {
v8__Isolate__RemoveNearHeapLimitCallback(self, callback, heap_limit)
};
}
/// Adjusts the amount of registered external memory. Used to give V8 an
/// indication of the amount of externally allocated memory that is kept
/// alive by JavaScript objects. V8 uses this to decide when to perform
/// global garbage collections. Registering externally allocated memory
/// will trigger global garbage collections more often than it would
/// otherwise in an attempt to garbage collect the JavaScript objects
/// that keep the externally allocated memory alive.
pub fn adjust_amount_of_external_allocated_memory(
&mut self,
change_in_bytes: i64,
) -> i64 {
unsafe {
v8__Isolate__AdjustAmountOfExternalAllocatedMemory(self, change_in_bytes)
}
}
pub fn set_oom_error_handler(&mut self, callback: OomErrorCallback) {
unsafe { v8__Isolate__SetOOMErrorHandler(self, callback) };
}
/// Returns the policy controlling how Microtasks are invoked.
pub fn get_microtasks_policy(&self) -> MicrotasksPolicy {
unsafe { v8__Isolate__GetMicrotasksPolicy(self) }
}
/// Returns the policy controlling how Microtasks are invoked.
pub fn set_microtasks_policy(&mut self, policy: MicrotasksPolicy) {
unsafe { v8__Isolate__SetMicrotasksPolicy(self, policy) }
}
/// Runs the default MicrotaskQueue until it gets empty and perform other
/// microtask checkpoint steps, such as calling ClearKeptObjects. Asserts that
/// the MicrotasksPolicy is not kScoped. Any exceptions thrown by microtask
/// callbacks are swallowed.
pub fn perform_microtask_checkpoint(&mut self) {
unsafe { v8__Isolate__PerformMicrotaskCheckpoint(self) }
}
/// An alias for PerformMicrotaskCheckpoint.
#[deprecated(note = "Use Isolate::perform_microtask_checkpoint() instead")]
pub fn run_microtasks(&mut self) {
self.perform_microtask_checkpoint()
}
/// Enqueues the callback to the default MicrotaskQueue
pub fn enqueue_microtask(&mut self, microtask: Local<Function>) {
unsafe { v8__Isolate__EnqueueMicrotask(self, &*microtask) }
}
/// Set whether calling Atomics.wait (a function that may block) is allowed in
/// this isolate. This can also be configured via
/// CreateParams::allow_atomics_wait.
pub fn set_allow_atomics_wait(&mut self, allow: bool) {
unsafe { v8__Isolate__SetAllowAtomicsWait(self, allow) }
}
/// Embedder injection point for `WebAssembly.compileStreaming(source)`.
/// The expectation is that the embedder sets it at most once.
///
/// The callback receives the source argument (string, Promise, etc.)
/// and an instance of [WasmStreaming]. The [WasmStreaming] instance
/// can outlive the callback and is used to feed data chunks to V8
/// asynchronously.
pub fn set_wasm_streaming_callback<F>(&mut self, _: F)
where
F: UnitType + Fn(&mut HandleScope, Local<Value>, WasmStreaming),
{
unsafe { v8__Isolate__SetWasmStreamingCallback(self, trampoline::<F>()) }
}
/// Returns true if there is ongoing background work within V8 that will
/// eventually post a foreground task, like asynchronous WebAssembly
/// compilation.
pub fn has_pending_background_tasks(&self) -> bool {
unsafe { v8__Isolate__HasPendingBackgroundTasks(self) }
}
/// Disposes the isolate. The isolate must not be entered by any
/// thread to be disposable.
unsafe fn dispose(&mut self) {
// Drop the scope stack.
ScopeData::drop_root(self);
// If there are finalizers left to call, we trigger GC to try and call as
// many of them as possible.
if !self.get_annex().finalizer_map.is_empty() {
// A low memory notification triggers a synchronous GC, which means
// finalizers will be called during the course of the call, rather than at
// some later point.
self.low_memory_notification();
}
// Set the `isolate` pointer inside the annex struct to null, so any
// IsolateHandle that outlives the isolate will know that it can't call
// methods on the isolate.
let annex = self.get_annex_mut();
{
let _lock = annex.isolate_mutex.lock().unwrap();
annex.isolate = null_mut();
}
// Clear slots and drop owned objects that were taken out of `CreateParams`.
annex.create_param_allocations = Box::new(());
annex.slots.clear();
// Subtract one from the Arc<IsolateAnnex> reference count.
Arc::from_raw(annex);
self.set_data(0, null_mut());
// No test case in rusty_v8 show this, but there have been situations in
// deno where dropping Annex before the states causes a segfault.
v8__Isolate__Dispose(self)
}
/// Take a heap snapshot. The callback is invoked one or more times
/// with byte slices containing the snapshot serialized as JSON.
/// It's the callback's responsibility to reassemble them into
/// a single document, e.g., by writing them to a file.
/// Note that Chrome DevTools refuses to load snapshots without
/// a .heapsnapshot suffix.
pub fn take_heap_snapshot<F>(&mut self, mut callback: F)
where
F: FnMut(&[u8]) -> bool,
{
extern "C" fn trampoline<F>(
arg: *mut c_void,
data: *const u8,
size: usize,
) -> bool
where
F: FnMut(&[u8]) -> bool,
{
let p = arg as *mut F;
let callback = unsafe { &mut *p };
let slice = unsafe { std::slice::from_raw_parts(data, size) };
callback(slice)
}
let arg = &mut callback as *mut F as *mut c_void;
unsafe { v8__HeapProfiler__TakeHeapSnapshot(self, trampoline::<F>, arg) }
}
}
pub(crate) struct IsolateAnnex {
create_param_allocations: Box<dyn Any>,
slots: HashMap<TypeId, RawSlot, BuildTypeIdHasher>,
finalizer_map: FinalizerMap,
// The `isolate` and `isolate_mutex` fields are there so an `IsolateHandle`
// (which may outlive the isolate itself) can determine whether the isolate
// is still alive, and if so, get a reference to it. Safety rules:
// - The 'main thread' must lock the mutex and reset `isolate` to null just
// before the isolate is disposed.
// - Any other thread must lock the mutex while it's reading/using the
// `isolate` pointer.
isolate: *mut Isolate,
isolate_mutex: Mutex<()>,
}
impl IsolateAnnex {
fn new(
isolate: &mut Isolate,
create_param_allocations: Box<dyn Any>,
) -> Self {
Self {
create_param_allocations,
slots: HashMap::default(),
finalizer_map: FinalizerMap::default(),
isolate,
isolate_mutex: Mutex::new(()),
}
}
}
impl Debug for IsolateAnnex {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("IsolateAnnex")
.field("isolate", &self.isolate)
.field("isolate_mutex", &self.isolate_mutex)
.finish()
}
}
/// IsolateHandle is a thread-safe reference to an Isolate. It's main use is to
/// terminate execution of a running isolate from another thread.
///
/// It is created with Isolate::thread_safe_handle().
///
/// IsolateHandle is Cloneable, Send, and Sync.
#[derive(Clone, Debug)]
pub struct IsolateHandle(Arc<IsolateAnnex>);
unsafe impl Send for IsolateHandle {}
unsafe impl Sync for IsolateHandle {}
impl IsolateHandle {
// This function is marked unsafe because it must be called only with either
// IsolateAnnex::mutex locked, or from the main thread associated with the V8
// isolate.
pub(crate) unsafe fn get_isolate_ptr(&self) -> *mut Isolate {
self.0.isolate
}
fn new(isolate: &Isolate) -> Self {
Self(isolate.get_annex_arc())
}
/// Forcefully terminate the current thread of JavaScript execution
/// in the given isolate.
///
/// This method can be used by any thread even if that thread has not
/// acquired the V8 lock with a Locker object.
///
/// Returns false if Isolate was already destroyed.
pub fn terminate_execution(&self) -> bool {
let _lock = self.0.isolate_mutex.lock().unwrap();
if self.0.isolate.is_null() {
false
} else {
unsafe { v8__Isolate__TerminateExecution(self.0.isolate) };
true
}
}
/// Resume execution capability in the given isolate, whose execution
/// was previously forcefully terminated using TerminateExecution().
///
/// When execution is forcefully terminated using TerminateExecution(),
/// the isolate can not resume execution until all JavaScript frames
/// have propagated the uncatchable exception which is generated. This
/// method allows the program embedding the engine to handle the
/// termination event and resume execution capability, even if
/// JavaScript frames remain on the stack.
///
/// This method can be used by any thread even if that thread has not
/// acquired the V8 lock with a Locker object.
///
/// Returns false if Isolate was already destroyed.
pub fn cancel_terminate_execution(&self) -> bool {
let _lock = self.0.isolate_mutex.lock().unwrap();
if self.0.isolate.is_null() {
false
} else {
unsafe { v8__Isolate__CancelTerminateExecution(self.0.isolate) };
true
}
}
/// Is V8 terminating JavaScript execution.
///
/// Returns true if JavaScript execution is currently terminating
/// because of a call to TerminateExecution. In that case there are
/// still JavaScript frames on the stack and the termination
/// exception is still active.
///
/// Returns false if Isolate was already destroyed.
pub fn is_execution_terminating(&self) -> bool {
let _lock = self.0.isolate_mutex.lock().unwrap();
if self.0.isolate.is_null() {
false
} else {
unsafe { v8__Isolate__IsExecutionTerminating(self.0.isolate) }
}
}
/// Request V8 to interrupt long running JavaScript code and invoke
/// the given |callback| passing the given |data| to it. After |callback|
/// returns control will be returned to the JavaScript code.
/// There may be a number of interrupt requests in flight.
/// Can be called from another thread without acquiring a |Locker|.
/// Registered |callback| must not reenter interrupted Isolate.
///
/// Returns false if Isolate was already destroyed.
// Clippy warns that this method is dereferencing a raw pointer, but it is
// not: https://github.com/rust-lang/rust-clippy/issues/3045
#[allow(clippy::not_unsafe_ptr_arg_deref)]
pub fn request_interrupt(
&self,
callback: InterruptCallback,
data: *mut c_void,
) -> bool {
let _lock = self.0.isolate_mutex.lock().unwrap();
if self.0.isolate.is_null() {
false
} else {
unsafe { v8__Isolate__RequestInterrupt(self.0.isolate, callback, data) };
true
}
}
}
/// Same as Isolate but gets disposed when it goes out of scope.
#[derive(Debug)]
pub struct OwnedIsolate {
cxx_isolate: NonNull<Isolate>,
}
impl OwnedIsolate {
pub(crate) fn new(cxx_isolate: *mut Isolate) -> Self {
let cxx_isolate = NonNull::new(cxx_isolate).unwrap();
Self { cxx_isolate }
}
}
impl Drop for OwnedIsolate {
fn drop(&mut self) {
unsafe {
self.exit();
self.cxx_isolate.as_mut().dispose()
}
}
}
impl Deref for OwnedIsolate {
type Target = Isolate;
fn deref(&self) -> &Self::Target {
unsafe { self.cxx_isolate.as_ref() }
}
}
impl DerefMut for OwnedIsolate {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { self.cxx_isolate.as_mut() }
}
}
impl HeapStatistics {
pub fn total_heap_size(&self) -> usize {
unsafe { v8__HeapStatistics__total_heap_size(self) }
}
pub fn total_heap_size_executable(&self) -> usize {
unsafe { v8__HeapStatistics__total_heap_size_executable(self) }
}
pub fn total_physical_size(&self) -> usize {
unsafe { v8__HeapStatistics__total_physical_size(self) }
}
pub fn total_available_size(&self) -> usize {
unsafe { v8__HeapStatistics__total_available_size(self) }
}
pub fn total_global_handles_size(&self) -> usize {
unsafe { v8__HeapStatistics__total_global_handles_size(self) }
}
pub fn used_global_handles_size(&self) -> usize {
unsafe { v8__HeapStatistics__used_global_handles_size(self) }
}
pub fn used_heap_size(&self) -> usize {
unsafe { v8__HeapStatistics__used_heap_size(self) }
}
pub fn heap_size_limit(&self) -> usize {
unsafe { v8__HeapStatistics__heap_size_limit(self) }
}
pub fn malloced_memory(&self) -> usize {
unsafe { v8__HeapStatistics__malloced_memory(self) }
}
pub fn external_memory(&self) -> usize {
unsafe { v8__HeapStatistics__external_memory(self) }
}
pub fn peak_malloced_memory(&self) -> usize {
unsafe { v8__HeapStatistics__peak_malloced_memory(self) }
}
pub fn number_of_native_contexts(&self) -> usize {
unsafe { v8__HeapStatistics__number_of_native_contexts(self) }
}
pub fn number_of_detached_contexts(&self) -> usize {
unsafe { v8__HeapStatistics__number_of_detached_contexts(self) }
}
/// Returns a 0/1 boolean, which signifies whether the V8 overwrite heap
/// garbage with a bit pattern.
pub fn does_zap_garbage(&self) -> usize {
unsafe { v8__HeapStatistics__does_zap_garbage(self) }
}
}
impl Default for HeapStatistics {
fn default() -> Self {
let mut s = MaybeUninit::<Self>::uninit();
unsafe {
v8__HeapStatistics__CONSTRUCT(&mut s);
s.assume_init()
}
}
}
impl<'s, F> MapFnFrom<F> for PrepareStackTraceCallback<'s>
where
F: UnitType
+ Fn(
&mut HandleScope<'s>,
Local<'s, Value>,
Local<'s, Array>,
) -> Local<'s, Value>,
{
// Windows x64 ABI: MaybeLocal<Value> returned on the stack.
#[cfg(target_os = "windows")]
fn mapping() -> Self {
let f = |ret_ptr, context, error, sites| {
let mut scope: CallbackScope = unsafe { CallbackScope::new(context) };
let r = (F::get())(&mut scope, error, sites);
unsafe { std::ptr::write(ret_ptr, &*r as *const _) };
ret_ptr
};
f.to_c_fn()
}
// System V ABI: MaybeLocal<Value> returned in a register.
#[cfg(not(target_os = "windows"))]
fn mapping() -> Self {
let f = |context, error, sites| {
let mut scope: CallbackScope = unsafe { CallbackScope::new(context) };
let r = (F::get())(&mut scope, error, sites);
&*r as *const _
};
f.to_c_fn()
}
}
/// A special hasher that is optimized for hashing `std::any::TypeId` values.
/// `TypeId` values are actually 64-bit values which themselves come out of some
/// hash function, so it's unnecessary to shuffle their bits any further.
#[derive(Clone, Default)]
pub(crate) struct TypeIdHasher {
state: Option<u64>,
}
impl Hasher for TypeIdHasher {
fn write(&mut self, _bytes: &[u8]) {
panic!("TypeIdHasher::write() called unexpectedly");
}
#[inline]
fn write_u64(&mut self, value: u64) {
let prev_state = self.state.replace(value);
debug_assert_eq!(prev_state, None);
}
#[inline]
fn finish(&self) -> u64 {
self.state.unwrap()
}
}
/// Factory for instances of `TypeIdHasher`. This is the type that one would
/// pass to the constructor of some map/set type in order to make it use
/// `TypeIdHasher` instead of the default hasher implementation.
#[derive(Copy, Clone, Default)]
pub(crate) struct BuildTypeIdHasher;
impl BuildHasher for BuildTypeIdHasher {
type Hasher = TypeIdHasher;
#[inline]
fn build_hasher(&self) -> Self::Hasher {
Default::default()
}
}
const _: () = {
assert!(size_of::<TypeId>() == size_of::<u64>());
assert!(align_of::<TypeId>() == size_of::<u64>());
};
pub(crate) struct RawSlot {
data: RawSlotData,
dtor: Option<RawSlotDtor>,
}
type RawSlotData = MaybeUninit<usize>;
type RawSlotDtor = unsafe fn(&mut RawSlotData) -> ();
impl RawSlot {
#[inline]
pub fn new<T: 'static>(value: T) -> Self {
if Self::needs_box::<T>() {
Self::new_internal(Box::new(value))
} else {
Self::new_internal(value)
}
}
// SAFETY: a valid value of type `T` must haven been stored in the slot
// earlier. There is no verification that the type param provided by the
// caller is correct.
#[inline]
pub unsafe fn borrow<T: 'static>(&self) -> &T {
if Self::needs_box::<T>() {
&*(self.data.as_ptr() as *const Box<T>)
} else {
&*(self.data.as_ptr() as *const T)
}
}
// Safety: see [`RawSlot::borrow`].
#[inline]
pub unsafe fn borrow_mut<T: 'static>(&mut self) -> &mut T {
if Self::needs_box::<T>() {
&mut *(self.data.as_mut_ptr() as *mut Box<T>)
} else {
&mut *(self.data.as_mut_ptr() as *mut T)
}
}
// Safety: see [`RawSlot::borrow`].
#[inline]
pub unsafe fn into_inner<T: 'static>(self) -> T {
let value = if Self::needs_box::<T>() {
*std::ptr::read(self.data.as_ptr() as *mut Box<T>)
} else {
std::ptr::read(self.data.as_ptr() as *mut T)
};
forget(self);
value
}
const fn needs_box<T: 'static>() -> bool {
size_of::<T>() > size_of::<RawSlotData>()
|| align_of::<T>() > align_of::<RawSlotData>()
}
#[inline]
fn new_internal<B: 'static>(value: B) -> Self {
assert!(!Self::needs_box::<B>());
let mut self_ = Self {
data: RawSlotData::zeroed(),
dtor: None,
};
unsafe {
ptr::write(self_.data.as_mut_ptr() as *mut B, value);
}
if needs_drop::<B>() {
self_.dtor.replace(Self::drop_internal::<B>);
};
self_
}
// SAFETY: a valid value of type `T` or `Box<T>` must be stored in the slot.
unsafe fn drop_internal<B: 'static>(data: &mut RawSlotData) {
assert!(!Self::needs_box::<B>());
drop_in_place(data.as_mut_ptr() as *mut B);
}
}
impl Drop for RawSlot {
fn drop(&mut self) {
if let Some(dtor) = self.dtor {
unsafe { dtor(&mut self.data) };
}
}
}