mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-21 12:22:50 -05:00
140 lines
4.9 KiB
C
140 lines
4.9 KiB
C
![]() |
/**********************************************************************
|
||
|
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
|
||
|
* Distributed under the MIT software license, see the accompanying *
|
||
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||
|
**********************************************************************/
|
||
|
|
||
|
#ifndef _SECP256K1_ECMULT_CONST_IMPL_
|
||
|
#define _SECP256K1_ECMULT_CONST_IMPL_
|
||
|
|
||
|
#include "scalar.h"
|
||
|
#include "group.h"
|
||
|
#include "ecmult_const.h"
|
||
|
#include "ecmult_impl.h"
|
||
|
|
||
|
#define WNAF_BITS 256
|
||
|
#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
|
||
|
|
||
|
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
|
||
|
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
|
||
|
int m; \
|
||
|
int abs_n = (n) * (((n) > 0) * 2 - 1); \
|
||
|
secp256k1_fe_t neg_y; \
|
||
|
VERIFY_CHECK(((n) & 1) == 1); \
|
||
|
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
|
||
|
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
|
||
|
for (m = 1; m < (1 << ((w) - 1)); m += 2) { \
|
||
|
/* This loop is used to avoid secret data in array indices. See
|
||
|
* the comment in ecmult_gen_impl.h for rationale. */ \
|
||
|
secp256k1_fe_cmov(&(r)->x, &(pre)[(m - 1) / 2].x, m == abs_n); \
|
||
|
secp256k1_fe_cmov(&(r)->y, &(pre)[(m - 1) / 2].y, m == abs_n); \
|
||
|
} \
|
||
|
(r)->infinity = 0; \
|
||
|
secp256k1_fe_normalize_weak(&(r)->x); \
|
||
|
secp256k1_fe_normalize_weak(&(r)->y); \
|
||
|
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
|
||
|
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
|
||
|
} while(0)
|
||
|
|
||
|
|
||
|
/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
|
||
|
* with the following guarantees:
|
||
|
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
|
||
|
* - each wnaf[i] is nonzero
|
||
|
* - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
|
||
|
*
|
||
|
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
|
||
|
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
|
||
|
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
|
||
|
*
|
||
|
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
|
||
|
*/
|
||
|
static void secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar_t *a, int w) {
|
||
|
secp256k1_scalar_t s = *a;
|
||
|
/* Negate to force oddness */
|
||
|
int is_even = secp256k1_scalar_is_even(&s);
|
||
|
int global_sign = secp256k1_scalar_cond_negate(&s, is_even);
|
||
|
|
||
|
int word = 0;
|
||
|
/* 1 2 3 */
|
||
|
int u_last = secp256k1_scalar_shr_int(&s, w);
|
||
|
int u;
|
||
|
/* 4 */
|
||
|
while (word * w < WNAF_BITS) {
|
||
|
int sign;
|
||
|
int even;
|
||
|
|
||
|
/* 4.1 4.4 */
|
||
|
u = secp256k1_scalar_shr_int(&s, w);
|
||
|
/* 4.2 */
|
||
|
even = ((u & 1) == 0);
|
||
|
sign = 2 * (u_last > 0) - 1;
|
||
|
u += sign * even;
|
||
|
u_last -= sign * even * (1 << w);
|
||
|
|
||
|
/* 4.3, adapted for global sign change */
|
||
|
wnaf[word++] = u_last * global_sign;
|
||
|
|
||
|
u_last = u;
|
||
|
}
|
||
|
wnaf[word] = u * global_sign;
|
||
|
|
||
|
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
|
||
|
VERIFY_CHECK(word == WNAF_SIZE(w));
|
||
|
}
|
||
|
|
||
|
|
||
|
static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a, const secp256k1_scalar_t *scalar) {
|
||
|
secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||
|
secp256k1_ge_t tmpa;
|
||
|
secp256k1_fe_t Z;
|
||
|
|
||
|
int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||
|
|
||
|
int i;
|
||
|
int is_zero = secp256k1_scalar_is_zero(scalar);
|
||
|
secp256k1_scalar_t sc = *scalar;
|
||
|
/* the wNAF ladder cannot handle zero, so bump this to one .. we will
|
||
|
* correct the result after the fact */
|
||
|
sc.d[0] += is_zero;
|
||
|
|
||
|
/* build wnaf representation for q. */
|
||
|
secp256k1_wnaf_const(wnaf, &sc, WINDOW_A - 1);
|
||
|
|
||
|
/* Calculate odd multiples of a.
|
||
|
* All multiples are brought to the same Z 'denominator', which is stored
|
||
|
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
|
||
|
* that the Z coordinate was 1, use affine addition formulae, and correct
|
||
|
* the Z coordinate of the result once at the end.
|
||
|
*/
|
||
|
secp256k1_gej_set_ge(r, a);
|
||
|
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
|
||
|
|
||
|
/* first loop iteration (separated out so we can directly set r, rather
|
||
|
* than having it start at infinity, get doubled several times, then have
|
||
|
* its new value added to it) */
|
||
|
i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
|
||
|
VERIFY_CHECK(i != 0);
|
||
|
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
|
||
|
secp256k1_gej_set_ge(r, &tmpa);
|
||
|
/* remaining loop iterations */
|
||
|
for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
|
||
|
int n;
|
||
|
int j;
|
||
|
for (j = 0; j < WINDOW_A - 1; ++j) {
|
||
|
secp256k1_gej_double_nonzero(r, r, NULL);
|
||
|
}
|
||
|
n = wnaf[i];
|
||
|
VERIFY_CHECK(n != 0);
|
||
|
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
|
||
|
secp256k1_gej_add_ge(r, r, &tmpa);
|
||
|
}
|
||
|
|
||
|
secp256k1_fe_mul(&r->z, &r->z, &Z);
|
||
|
|
||
|
/* correct for zero */
|
||
|
r->infinity |= is_zero;
|
||
|
}
|
||
|
|
||
|
#endif
|